2025 Vol. 41, No. 3
Article Contents

LI Yongchen, LUO Zijin, MA Kedi, FANG Xiaoyu, TIAN Huafeng, LYU Yanxin, XIN Yi. New understanding of microseismic activity in fault zones for geological carbon storage: a case study of the Decatur project in the United States[J]. Marine Geology Frontiers, 2025, 41(3): 65-77. doi: 10.16028/j.1009-2722.2024.235
Citation: LI Yongchen, LUO Zijin, MA Kedi, FANG Xiaoyu, TIAN Huafeng, LYU Yanxin, XIN Yi. New understanding of microseismic activity in fault zones for geological carbon storage: a case study of the Decatur project in the United States[J]. Marine Geology Frontiers, 2025, 41(3): 65-77. doi: 10.16028/j.1009-2722.2024.235

New understanding of microseismic activity in fault zones for geological carbon storage: a case study of the Decatur project in the United States

More Information
  • Based on the U.S. Decatur CO2 storage project, the interrelationships between the formation thickness, tectonic stress state, and microseismic activity induced by CO2 injection during the carbon storage process were investigated in this study, providing a scientific basis for site selection and safety assessment of carbon storage. By analyzing the characteristics of the reservoir (Mt. Simon Sandstone) and caprock (Argenta Formation) thickness of the Decatur Project, the impact of these factors on pressure diffusion during injection was explored. Combining the distribution of tectonic stress and data accumulated in history, the sensitivity of fault slip in the Precambrian basement was analyzed. The Argenta Formation near the CO2 injection point is relatively thin or absent, lacking sufficient thickness to prevent pressure migration towards the basement fault, which resulted in microseismic events occurring mostly in the Precambrian basement. After CO2 injection into the Mt. Simon Sandstone reservoir, the pore pressure initially increased near the injection point, and then diffused over a larger area. Simple CO2 injection alone was not strong enough to trigger large-scale microseismic activity. The Precambrian basement is more sensitive to the stress release caused by fluid injection due to the tectonic stresses accumulated in history. In the Decatur Project, when the CO2 injection rate reached 1.25~1.4 million tons per year, fault slip and microseismic activity were induced. The selection of CO2 storage sites should be evaluated comprehensively based on the strata thickness, tectonic stress state, and the injection-induced mechanism to ensure the safety and long-term stability of the injection.

  • 加载中
  • [1] 陈建文,孙晶,杨长清,等. 东海陆架盆地新生界咸水层二氧化碳封存地质条件及封存前景[J]. 海洋地质前沿,2023,39(10):14-21.

    Google Scholar

    CHEN J W,SUN J,YANG C Q,et al. Geological conditions and prospects of carbon dioxide storage in the Cenozoic saline water layers of the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(10):14-21.

    Google Scholar

    [2] 可行,陈建文,龚建明,等. 东海陆架盆地CO2地质封存适宜性评价[J]. 海洋地质前沿,2023,39(7):1-12.

    Google Scholar

    KE X,CHEN J W,GONG J M,et al. Suitability evaluation of CO2 sequestration in the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(7):1-12.

    Google Scholar

    [3] European Environment Agency. European climate risk assessment:exclusive summary[R]. Denmark:European Environment Agency,2024.

    Google Scholar

    [4] 可行,陈建文,龚建明,等. 珠江口盆地二氧化碳地质封存条件及源汇匹配性分析[J]. 海洋地质与第四纪地质,2023,43(2):55-65.

    Google Scholar

    KE X,CHEN J W,GONG J M,et al. Assessment on geological condition for carbon dioxide sequestration and source-sink matching in the Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2023,43(2):55-65.

    Google Scholar

    [5] 李姜辉,余凤玲,牛雄伟,等. 海底碳封存监测技术体系研究及未来发展[J]. 地球科学进展,2023,38(11):1121-1144.

    Google Scholar

    LI J H,YU F L,NIU X W,et al. Advances and future development of monitoring technologies for marine carbon storage[J]. Advances in Earth Science,2023,38(11):1121-1144.

    Google Scholar

    [6] 魏晓琛,李琦,邢会林,等. 地下流体注入诱发地震机理及其对CO2地下封存工程的启示[J]. 地球科学进展,2014,29(11):1226.

    Google Scholar

    WEI X C, LI Q, XING H L, et al. Mechanism of underground fluid injection induced seismicity and its implications for CCS projects[J]. Advances in Earth Science,2014,29(11):1226-1241.

    Google Scholar

    [7] FINLEY R J. An overview of the Illinois Basin Decatur project[J]. Greenhouse Gases:Science and Technology,2014,4(5):571-579. doi: 10.1002/ghg.1433

    CrossRef Google Scholar

    [8] GOLLAKOTA S,MCDONALD S. Commercial-scale CCS project in Decatur,Illinois-construction status and operational plans for demonstration[J]. Energy Procedia,2014,63:5986-5993. doi: 10.1016/j.egypro.2014.11.633

    CrossRef Google Scholar

    [9] ZALUSLI W,LEE S Y. IBDP final static geological model development and dynamic modelling. CO2 datashare,2020 [EB/OL]. [2024-06-12]. https://co2datashare.org.

    Google Scholar

    [10] 马馨蕊,梁杰,李清,等. 咸水层CO2地质封存研究进展及前景展望[J]. 海洋地质前沿,2024,40(10):1-18.

    Google Scholar

    MA X R,LIANG J,LI Q,et al. Progress and prospects of CO2 geological storage in saline aquifer[J]. Marine Geology Frontiers,2024,40(10):1-18.

    Google Scholar

    [11] 赵改善. 二氧化碳地质封存地球物理监测:现状,挑战与未来发展[J]. 石油物探,2023,62(2):194-211.

    Google Scholar

    ZHAO G S. Geophysical monitoring for geological carbon sequestration:present status,challenges,and future development [J].Geophysical Prospecting for Petroleum,2023,62(2):194-211.

    Google Scholar

    [12] GREENBERG S. An assessment of geological sequestration options in the Illinois Basin-Phase II and III[R]. Washington:U. S. Department of Energy,2020.

    Google Scholar

    [13] FREIBURG J T,RITZI R W,KEHOE K S. Depositional and diagenetic controls on anomalously high porosity within a deeply buried CO2 storage reservoir:the Cambrian Mt. Simon sandstone,Illinois Basin,USA[J]. International Journal of Greenhouse Gas Control. 2016,55:42-54.

    Google Scholar

    [14] WU X W,QIN S Q,XUE L,et al. Physical mechanism of major earthquakes by earthquake cases[J]. Chinese Journal of Geophysics,2016,59(10):3696-3710.

    Google Scholar

    [15] 秦四清,徐锡伟,胡平,等. 孕震断层的多锁固段脆性破裂机制与地震预测新方法的探索[J]. 地球物理学报,2010,53(4):1001-1014.

    Google Scholar

    QIN S Q,XU T W,HU B,et al. Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction[J]. Chinese Journal of Geophysics.,2010,53(4):1001-1014.

    Google Scholar

    [16] 惠钢,陈胜男,顾斐. 流体-地质力学耦合建模表征水力压裂诱发地震:以加拿大Fox Creek地区为例[J]. 地球物理学报,2021,64(3):864-875.

    Google Scholar

    HUI G,CHEN S N,GU F. Coupled fluid-geomechanics modeling to characterize hydraulic fracturing-induced earthquakes:case study in Fox Creek,Canada[J]. Chinese Journal of Geophysics,2021,64(3):864-875.

    Google Scholar

    [17] RUTQVIST J,RINALDI A P,CAPPA F,et al. Fault activation and induced seismicity in geological carbon storage:lessons learned from recent modeling studies[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8:789-804. doi: 10.1016/j.jrmge.2016.09.001

    CrossRef Google Scholar

    [18] ZOBACK M D,GORELICK S M. Earthquake triggering and large-scale geologic storage of carbon dioxide[J]. Proceedings of the National Academy of Sciences,2012,109(26):10164-10168. doi: 10.1073/pnas.1202473109

    CrossRef Google Scholar

    [19] MAZZOLDI A,RINALDI A P,BORGIA A,et al. Induced seismicity within geological carbon sequestration projects:maximum earthquake magnitude and leakage potential from undetected faults[J]. International Journal of Greenhouse Gas Control,2012,10:434-442. doi: 10.1016/j.ijggc.2012.07.012

    CrossRef Google Scholar

    [20] VERDON J P. Significance for secure CO2 storage of earthquakes induced by fluid injection[J]. Environmental Research Letters,2014,9(6):064022. doi: 10.1088/1748-9326/9/6/064022

    CrossRef Google Scholar

    [21] TARON J,ELSWORTH D. Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(5):855-864. doi: 10.1016/j.ijrmms.2009.01.007

    CrossRef Google Scholar

    [22] TARON J,ELSWORTH D,MIN K B. Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable,fractured porous media[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(5):842-854. doi: 10.1016/j.ijrmms.2009.01.008

    CrossRef Google Scholar

    [23] LYU Y,YUAN C,ZHU X,et al. Influence of permeability anisotropy on rock damage and heat transfer in geothermal reserv-oir[J]. Arabian Journal of Geosciences,2021,14(13):1293. doi: 10.1007/s12517-021-07705-z

    CrossRef Google Scholar

    [24] LYU Y X,YUAN C,ZHU X,et al. THMD analysis of fluid injection-induced fault reactivation and slip in EGS[J]. Geothermics,2022,99:102303. doi: 10.1016/j.geothermics.2021.102303

    CrossRef Google Scholar

    [25] GAN Q,ELSWORTH D. Analysis of fluid injection-induced fault reactivation and seismic slip in geothermal reservoirs[J]. Journal of Geophysical Research:Solid Earth,2014,119(4),3340-3353.

    Google Scholar

    [26] GAN Q,LEI,Q. Induced fault reactivation by thermal perturbation in enhanced geothermal systems[J]. Geothermics,2020,86:101814. doi: 10.1016/j.geothermics.2020.101814

    CrossRef Google Scholar

    [27] BONDARENKO N,PODLADCHIKOV Y,MAKHNENKO R. Hydromechanical impact of basement rock on injection-induced seismicity in Illinois Basin[J]. Scientific Reports,2022,12(1):15639. doi: 10.1038/s41598-022-19775-4

    CrossRef Google Scholar

    [28] KIVI I R,PUJADES E,RUTQVIST J,et al . Cooling-induced reactivation of distant faults during long-term geothermal energy production in hot sedimentary aquifers[J]. Scientific Reports,2022,12(1):2065. doi: 10.1038/s41598-022-06067-0

    CrossRef Google Scholar

    [29] GIUNTOLI F,MENEGON L,SIRON G,et al. Methane-hydrogen-rich fluid migration may trigger seismic failure in subduction zones at forearc depths[J]. Nature Communications,2024,15(1):480. doi: 10.1038/s41467-023-44641-w

    CrossRef Google Scholar

    [30] URPI L,RINALDI A P,RUTQVIST J,et al. Fault stability perturbation by thermal pressurization and stress transfer around a deep geological repository in a clay formation[J]. Journal of Geophysical Research:Solid Earth,2019,124(8):8506-8518. doi: 10.1029/2019JB017694

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(3)

Article Metrics

Article views(66) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint