2025 Vol. 41, No. 3
Article Contents

MA Xinrui, LIANG Jie, LI Qing, CHEN Jianwen, YUAN Yong, LUO Di, ZHAO Hualin. Study of CO2 mineralization and storage mechanism in basalt and sandstone[J]. Marine Geology Frontiers, 2025, 41(3): 56-64. doi: 10.16028/j.1009-2722.2024.256
Citation: MA Xinrui, LIANG Jie, LI Qing, CHEN Jianwen, YUAN Yong, LUO Di, ZHAO Hualin. Study of CO2 mineralization and storage mechanism in basalt and sandstone[J]. Marine Geology Frontiers, 2025, 41(3): 56-64. doi: 10.16028/j.1009-2722.2024.256

Study of CO2 mineralization and storage mechanism in basalt and sandstone

More Information
  • Anthropogenic emissions of CO2 pose a serious threat to the human living environment and lead to significant changes in the ecosystem. Geological storage, which has been proposed in recent years as one of the technologies to deal with excess CO2 in the atmosphere, can be categorized into physical storage, which relies on the physical properties of the pores of the reservoir rock, and chemical storage, which is realized through the reaction of CO2 with the surrounding rocks. The chemical method of mineralized storage utilizes the process of converting CO2 into stable solid carbonates to achieve the goal of long-term storage, which is regarded as the safest and most stable storage technology. By discussing the principle and potential of CO2 mineralization, we comparatively analyzed the reaction mechanisms, influencing factors, mineralization rates, and storage capacities in different rocks, and summarized the advantages and disadvantages of CO2 mineralization in basalt and sandstone. Combined with two basalt mineralization demonstration projects that have been successfully implemented globally at present, we put forward the ideas and prospects for CO2 mineralization and storage in clastic rock reservoirs.

  • 加载中
  • [1] Global CCS Institute. The global status of CCS report 2021 [R]. Australia:Global CCS Institute,2021.

    Google Scholar

    [2] SHUKLA R,RANJITH P,HAQUE A,et al. A review of studies on CO2 sequestration and caprock integrity[J]. Fuel,2010,89(10):2651-2664. doi: 10.1016/j.fuel.2010.05.012

    CrossRef Google Scholar

    [3] HARTMANN J,WEST A J,RENFORTH P,et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide,supply nutrients,and mitigate ocean acidification[J]. Reviews of Geophysics,2013,51(2):113-149. doi: 10.1002/rog.20004

    CrossRef Google Scholar

    [4] SECRETARY OF ENERGY ADVISORY BOARD. Report of the task force on RD&D strategy for CO2 utilization and/or negative emissions at the gigatonne scale [R]. Washington,DC:United States Department of Energy, 2016.

    Google Scholar

    [5] POGGE VON STRANDMANN P A E,BURTON K W,SNæBJöRNSDóTTIR S O,et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes[J]. Nature Communications,2019,10(1):1983. doi: 10.1038/s41467-019-10003-8

    CrossRef Google Scholar

    [6] BENSON S M,BENNACEUR K,COOK P,et al. Carbon Capture and Storage [M]// Global Energy Assessment:Toward a Sustainable Future. Cambridge:Cambridge University Press. 2012:993-1068.

    Google Scholar

    [7] BACHU S. CO2 storage in geological media:role,means,status and barriers to deployment[J]. Progress in Energy and Combustion Science,2008,34(2):254-273. doi: 10.1016/j.pecs.2007.10.001

    CrossRef Google Scholar

    [8] DE CONINCK H,BENSON S M. Carbon dioxide capture and storage:issues and prospects[J]. Annual Review of Environment and Resources,2014,39(1):243-270. doi: 10.1146/annurev-environ-032112-095222

    CrossRef Google Scholar

    [9] ABDOLHOSSEINI QOMI M J,MILLER Q R S,ZARE S,et al. Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films[J]. Nature Reviews Chemistry,2022,6(9):598-613. doi: 10.1038/s41570-022-00418-1

    CrossRef Google Scholar

    [10] SNæBJöRNSDóTTIR S Ó,SIGFúSSON B,MARIENI C,et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment,2020,1(2):90-102.

    Google Scholar

    [11] GADIKOTA G. Carbon mineralization pathways for carbon capture,storage and utilization[J]. Communications Chemistry,2021,4(1):23. doi: 10.1038/s42004-021-00461-x

    CrossRef Google Scholar

    [12] SEIFRITZ W. Mirrors to halt global warming?[J]. Nature,1989,340(6235):603.

    Google Scholar

    [13] LACKNER K S,WENDT C H,BUTT D P,et al. Carbon dioxide disposal in carbonate minerals[J]. Energy,1995,20(11):1153-1170. doi: 10.1016/0360-5442(95)00071-N

    CrossRef Google Scholar

    [14] GERDEMANN S J,DAHLIN D C,O'CONNOR W K. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals [C]. //GALE J,KAYA Y. Greenhouse Gas Control Technologies - 6th International Conference. Kyoto,2003:677-682.

    Google Scholar

    [15] HUIJGEN W J J,WITKAMP G J,COMANS R N J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J]. Chemical Engineering Science,2006,61(13):4242-4251. doi: 10.1016/j.ces.2006.01.048

    CrossRef Google Scholar

    [16] BEAULIEU E,GODDéRIS Y,DONNADIEU Y,et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change,2012,2(5):346-349. doi: 10.1038/nclimate1419

    CrossRef Google Scholar

    [17] KELEMEN P B,MATTER J. In situ carbonation of peridotite for CO2 storage[J]. Proceedings of the National Academy of Sciences,2008,105(45):17295-17300. doi: 10.1073/pnas.0805794105

    CrossRef Google Scholar

    [18] RAJENDRAN S,NASIR S. Mapping of Moho and Moho Transition Zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique[J]. Tectonophysics,2015,657(8):63-80.

    Google Scholar

    [19] WANG F,DREISINGER D. Status of CO2 mineralization and its utilization prospects[J]. Miner and Miner Mater,2022,1(4).

    Google Scholar

    [20] BAŁDYGA J,HENCZKA M,SOKOLNICKA K. Utilization of carbon dioxide by chemically accelerated mineral carbonation[J]. Materials Letters,2010,64(6):702-704. doi: 10.1016/j.matlet.2009.12.043

    CrossRef Google Scholar

    [21] BOBICKI E R,LIU Q,XU Z,et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy and Combustion Science,2012,38(2):302-320. doi: 10.1016/j.pecs.2011.11.002

    CrossRef Google Scholar

    [22] WILSON S,HARRISON A L,DIPPLE G M,et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine,western Australia:rates,controls and prospects for carbon neutral mining[J]. International Journal of Greenhouse Gas Control,2014,25(6):121-140.

    Google Scholar

    [23] HARRISON A L,POWER I M,DIPPLE G M. Accelerated carbonation of brucite in mine tailings for carbon sequestration[J]. Environmental Science & Technology,2013,47(1):126-134.

    Google Scholar

    [24] KIM K,KIM D,NA Y,et al. A review of carbon mineralization mechanism during geological CO2 storage[J]. Heliyon,2023,9(12):e23135. doi: 10.1016/j.heliyon.2023.e23135

    CrossRef Google Scholar

    [25] DE HEER J. The principle of Le Châtelier and Braun[J]. Journal of Chemical Education,1957,34(8):375. doi: 10.1021/ed034p375

    CrossRef Google Scholar

    [26] OLSSON J,BOVET N,MAKOVICKY E,et al. Olivine reactivity with CO2 and H2O on a microscale:implications for carbon sequestration[J]. Geochimica et Cosmochimica Acta,2012,77(1):86-97.

    Google Scholar

    [27] SANDALOW D,AINES R,FRIEDMANN J,et al. Carbon Mineralization Roadmap Draft October 2021 [R]. Livermore,United States:Lawrence Livermore National Lab,2021.

    Google Scholar

    [28] 陈霞玉,陈立辉,陈晹,等. 中国中—东部地区新生代玄武岩的分布规律与面积汇总[J].高校地质学报,2014,20(4):507-519.

    Google Scholar

    CHEN X Y,CHEN L H,CHEN Y,et al. Distribution summary of cenozoic basalts in central and eastern China [J]. Geological Journal of China Universities,2014,20(4):507-519.

    Google Scholar

    [29] 李国玉,吕鸣岗. 中国含油气盆地图集 (第二版) [M]. 北京:石油工业出版社,2002.

    Google Scholar

    LI G Y,LYU M G. Atlas of China's Petroliferous Basins [M]. Beijing:Petroleum Industry Press,2002.

    Google Scholar

    [30] RAZA A,GLATZ G,GHOLAMI R,et al. Carbon mineralization and geological storage of CO2 in basalt:mechanisms and technical challenges[J]. Earth-Science Reviews,2022,229(6):104036.

    Google Scholar

    [31] WOLFF-BOENISCH D,GISLASON S R,OELKERS E H. The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates[J]. Geochimica et Cosmochimica Acta,2006,70(4):858-870. doi: 10.1016/j.gca.2005.10.016

    CrossRef Google Scholar

    [32] COX K G,BELL J D,PANKHURST R J. The interpretation of igneous rocks [M]. Berlin:Springer Science & Business Media,2013.

    Google Scholar

    [33] JIA J,LIANG Y,TSUJI T,et al. Ab initio molecular dynamics study of carbonation and hydrolysis reactions on cleaved quartz (001) surface[J]. The Journal of Physical Chemistry C,2019,123(8):4938-4948. doi: 10.1021/acs.jpcc.8b12089

    CrossRef Google Scholar

    [34] GISLASON S R,HANS P E. Meteoric water-basalt interactions. I:a laboratory study[J]. Geochimica et Cosmochimica Acta,1987,51(10):2827-2840. doi: 10.1016/0016-7037(87)90161-X

    CrossRef Google Scholar

    [35] KASZUBA J P,WILLIAMS L L,JANECKY D R,et al. Immiscible CO2-H2O fluids in the shallow crust [J]. Geochemistry,Geophysics,Geosystems,2006,7(10):1-11.

    Google Scholar

    [36] GUO J Q,LI M J,HE Y L,et al. A systematic review of supercritical carbon dioxide(S-CO2) power cycle for energy industries:technologies,key issues,and potential prospects[J]. Energy Conversion and Management,2022,258(4):115437.

    Google Scholar

    [37] XIONG W,WELLS R K,HORNER J A,et al. CO2 Mineral sequestration in naturally porous basalt[J]. Environmental Science & Technology Letters,2018,5(3):142-147.

    Google Scholar

    [38] GISLASON S,WOLFF-BOENISCH D,STEFANSSON A,et al. Mineral sequestration of carbon dioxide in basalt:a pre-injection overview of the CarbFix project[J]. International Journal of Greenhouse Gas Control,2010,4(3):537-545. doi: 10.1016/j.ijggc.2009.11.013

    CrossRef Google Scholar

    [39] OELKERS E H,OELKERS E H,OELKERS E H,et al. Using stable Mg isotope signatures to assess the fate of magnesium during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland[J]. Geochimica et Cosmochimica Acta,2019,245(1):542-555.

    Google Scholar

    [40] MCGRAIL B P,SPANE F A,AMONETTE J E,et al. Injection and monitoring at the Wallula basalt pilot project[J]. Energy Procedia,2014,63:2939-2948. doi: 10.1016/j.egypro.2014.11.316

    CrossRef Google Scholar

    [41] WHITE S K,SPANE F A,SCHAEF H T,et al. Quantification of CO2 mineralization at the Wallula basalt pilot project[J]. Environmental Science & Technology,2020,54(22):14609-14616.

    Google Scholar

    [42] BACHU S. Sequestration of CO2 in geological media:criteria and approach for site selection in response to climate change[J]. Energy Conversion and Management,2000,41(9):953-970. doi: 10.1016/S0196-8904(99)00149-1

    CrossRef Google Scholar

    [43] ADU-GYAMFI B,AMPOMAH W,TU J,et al. Assessment of chemo-mechanical impacts of CO2 sequestration on the caprock formation in Farnsworth oil field,Texas[J]. Scientific Reports,2022,12(1):13023. doi: 10.1038/s41598-022-16990-x

    CrossRef Google Scholar

    [44] SONG Z,YANG L,JIANG F,et al. The mechanism of clay mineral transformation in CO2 geological storage and its impact on long-term storage potential[J]. Geoenergy Science and Engineering,2024,242(11):213192.

    Google Scholar

    [45] WANG Z,TANG X,JING T,et al. Comparison of mineral transformation in CO2 geological storage under CO2-water-sandstone and mudstone reactions[J]. Geoenergy Science and Engineering,2024,242(11):213215.

    Google Scholar

    [46] SAMBO C,LIU N,SHAIBU R,et al. A technical review of CO2 for enhanced oil recovery in unconventional oil reservoirs[J]. Geoenergy Science and Engineering,2023,221(2):111185.

    Google Scholar

    [47] AL-SHARGABI M,DAVOODI S,WOOD D A,et al. Carbon dioxide applications for enhanced oil recovery assisted by nanoparticles:recent developments[J]. ACS Omega,2022,7(12):9984-9994. doi: 10.1021/acsomega.1c07123

    CrossRef Google Scholar

    [48] ZHANG S,DEPAOLO D J,XU T,et al. Mineralization of carbon dioxide sequestered in volcanogenic sandstone reservoir rocks[J]. International Journal of Greenhouse Gas Control,2013,18(10):315-328.

    Google Scholar

    [49] BELLO A M,AL-YASERI A,AMAO A O,et al. CO2-rock-brine interactions in feldspar-rich sandstones that underwent intense heating[J]. ACS Omega,2024,9(29):31578-31585. doi: 10.1021/acsomega.4c01256

    CrossRef Google Scholar

    [50] BOWKER K A,SHULER P J. Carbon dioxide injection and resultant alteration of the weber sandstone,Rangely Field,Colorado[J]. AAPG Bulletin,1991,75(9):1489-1499.

    Google Scholar

    [51] BACHU S,GUNTER W D,PERKINS E H. Aquifer disposal of CO2:hydrodynamic and mineral trapping[J]. Energy Conversion and Management,1994,35(4):269-279. doi: 10.1016/0196-8904(94)90060-4

    CrossRef Google Scholar

    [52] ZHANG L,ZHANG T,ZHAO Y. A review of interaction mechanisms and microscopic simulation methods for CO2-water-rock system[J]. Petroleum Exploration and Development,2024,51(1):223-238.

    Google Scholar

    [53] LERMAN A,MACKENZIE F T. Carbonate minerals and the CO2-carbonic acid system [J]. Encyclopedia of Geochemistry; Encyclopedia of Earth Sciences Series,2018,(1):206-226.

    Google Scholar

    [54] ESPINOZA D N,SANTAMARINA J C. Clay interaction with liquid and supercritical CO2:the relevance of electrical and capillary forces[J]. International Journal of Greenhouse Gas Control,2012,10(9):351-362.

    Google Scholar

    [55] 韦莉,田玉玲. 蒙脱石与土酸反应的实验研究[J]. 油田化学,1998,15(3):237-240.

    Google Scholar

    WEI L,TIAN Y L. An experimental study on reaction of montmorillonite with mud acid [J]. Oilfield Chemistry,1998,15(3):237-240.

    Google Scholar

    [56] WU S,ZOU C,MA D,et al. Reservoir property changes during CO2-brine flow-through experiments in tight sandstone:implications for CO2 enhanced oil recovery in the Triassic Chang 7 Member tight sandstone,Ordos Basin,China[J]. Journal of Asian Earth Sciences,2019,179(8):200-210.

    Google Scholar

    [57] BLATT H,JONES R L. Proportions of exposed igneous,metamorphic,and sedimentary rocks[J]. Geological Society of America Bulletin,1975,86(8):1085-1088. doi: 10.1130/0016-7606(1975)86<1085:POEIMA>2.0.CO;2

    CrossRef Google Scholar

    [58] CREBFIX O. Pre-feasibility screening study for CO2 mineral storage potential in China [R]. Baejarhals 1,110 Reykjavik,Iceland:2021,1-58.

    Google Scholar

    [59] OELKERS E H,GISLASON S R,MATTER J. Mineral carbonation of CO2[J]. Elements,2008,4(5):333-337. doi: 10.2113/gselements.4.5.333

    CrossRef Google Scholar

    [60] MORSE J W,ARVIDSON R S. The dissolution kinetics of major sedimentary carbonate minerals[J]. Earth-Science Reviews,2002,58(1/2):51-84. doi: 10.1016/S0012-8252(01)00083-6

    CrossRef Google Scholar

    [61] PARK A H A,FAN L S. CO2 mineral sequestration:physically activated dissolution of serpentine and pH swing process[J]. Chemical Engineering Science,2004,59(22/23):5241-5247. doi: 10.1016/j.ces.2004.09.008

    CrossRef Google Scholar

    [62] MORSE J W,BERNER R A. Dissolution kinetics of calcium carbonate in sea water; I,a kinetic origin for the lysocline[J]. American Journal of Science,1972,272(9):840-851. doi: 10.2475/ajs.272.9.840

    CrossRef Google Scholar

    [63] OELKERS E H. General kinetic description of multioxide silicate mineral and glass dissolution[J]. Geochimica et Cosmochimica Acta,2001,65(21):3703-3719. doi: 10.1016/S0016-7037(01)00710-4

    CrossRef Google Scholar

    [64] OELKERS E H,SCHOTT J. An experimental study of enstatite dissolution rates as a function of pH,temperature,and aqueous Mg and Si concentration,and the mechanism of pyroxene/pyroxenoid dissolution[J]. Geochimica et Cosmochimica Acta,2001,65(8):1219-1231. doi: 10.1016/S0016-7037(00)00564-0

    CrossRef Google Scholar

    [65] 李万伦,陈晶,贾凌霄,等. 玄武岩CO2地质封存研究进展[J]. 地质论评,2022,68(1):1-11.

    Google Scholar

    LI W L,CHEN J,JIA L X,et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review,2022,68(1):1-11.

    Google Scholar

    [66] MARINI L. Chapter 7 - Reaction Path Modelling of Geological CO2 Sequestration [M]. MARINI L. Developments in Geochemistry. Amsterdam:Elsevier,2007:319-409.

    Google Scholar

    [67] SINGHAL B B S,GUPTA R P. Hydrogeology of volcanic rocks[J]. Applied Hydrogeology of Fractured Rocks,1999:261-274.

    Google Scholar

    [68] FENTA M C,ANTENEH Z L,SZANYI J,et al. Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area,Northwest Ethiopia[J]. Groundwater for Sustainable Development,2020,11(10):100408.

    Google Scholar

    [69] 王苏健,冯洁,侯恩科,等. 砂岩微观孔隙结构类型及其对含水层富水性的影响:以柠条塔井田为例[J]. 煤炭学报,2020,45(9):3236-3244.

    Google Scholar

    WANG S J,FENG J,HOU E K,et al. Microscopic pore structure types of sandstone and its effects on aquifer water abundance:taking in Ningtiaota coal mine as an example[J]. Journal of China Coal Society,2020,45(9):3236-3244.

    Google Scholar

    [70] MCGRAIL B P,SCHAEF H T,HO A M,et al. Potential for carbon dioxide sequestration in flood basalts [J]. Journal of Geophysical Research:Solid Earth,2006,111:B12201.

    Google Scholar

    [71] SNæBJöRNSDóTTIR S Ó,WIESE F,FRIDRIKSSON T,et al. CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges[J]. Energy Procedia,2014,63:4585-4600. doi: 10.1016/j.egypro.2014.11.491

    CrossRef Google Scholar

    [72] 高志豪,夏菖佑,廖松林,等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报,2023,29(1):66-75.

    Google Scholar

    GAO Z H,XIA C Y,LIAO S L,et al. Progress of methods for assessing CO2 mineralization storage potential in basalt [J]. Geological Journal of China Universities,2023,29(1):66-75.

    Google Scholar

    [73] ZHANG L,WEN R,LI F,et al. Assessment of CO2 mineral storage potential in the terrestrial basalts of China[J]. Fuel,2023,348(11):128602.

    Google Scholar

    [74] ZHANG L. Saline aquifer storage of CO2 from natural gas reservoirs in the South China Sea:trapping mechanisms and project design[J]. China University of Petroleum (East China),2011,369(8):131744.

    Google Scholar

    [75] 李鹏春,江静练,程锦辉,等. 广东雷州半岛火山岩二氧化碳矿化封存潜力评估[J]. 高校地质学报,2023,29(1):76-84.

    Google Scholar

    LI P C,JIANG J L,CHENG J H,et al. Assessment of carbon dioxide mineralization sequestration potential of volcanic rocks in Leizhou Peninsula,Guangdong Province,China [J]. Geological Journal of China Universities,2023,29(1):76-84.

    Google Scholar

    [76] 吾尔娜,陈琦,王世伟,等. 济阳坳陷玄武岩油气藏储层的CO2封存潜力研究[J]. 西部探矿工程,2017,29(12):98-100.

    Google Scholar

    WU E N,CHEN Q,WANG S W,et al. Study on CO2 Sequestration Potential of Basalt Reservoir Reservoirs in Jiyang Depression [J]. West-China Exploration Engineering,2017,29(12):98-100.

    Google Scholar

    [77] BACHU S. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control,2015,40(9):188-202.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(111) PDF downloads(83) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint