Citation: | MA Xinrui, LIANG Jie, LI Qing, CHEN Jianwen, YUAN Yong, LUO Di, ZHAO Hualin. Study of CO2 mineralization and storage mechanism in basalt and sandstone[J]. Marine Geology Frontiers, 2025, 41(3): 56-64. doi: 10.16028/j.1009-2722.2024.256 |
Anthropogenic emissions of CO2 pose a serious threat to the human living environment and lead to significant changes in the ecosystem. Geological storage, which has been proposed in recent years as one of the technologies to deal with excess CO2 in the atmosphere, can be categorized into physical storage, which relies on the physical properties of the pores of the reservoir rock, and chemical storage, which is realized through the reaction of CO2 with the surrounding rocks. The chemical method of mineralized storage utilizes the process of converting CO2 into stable solid carbonates to achieve the goal of long-term storage, which is regarded as the safest and most stable storage technology. By discussing the principle and potential of CO2 mineralization, we comparatively analyzed the reaction mechanisms, influencing factors, mineralization rates, and storage capacities in different rocks, and summarized the advantages and disadvantages of CO2 mineralization in basalt and sandstone. Combined with two basalt mineralization demonstration projects that have been successfully implemented globally at present, we put forward the ideas and prospects for CO2 mineralization and storage in clastic rock reservoirs.
[1] | Global CCS Institute. The global status of CCS report 2021 [R]. Australia:Global CCS Institute,2021. |
[2] | SHUKLA R,RANJITH P,HAQUE A,et al. A review of studies on CO2 sequestration and caprock integrity[J]. Fuel,2010,89(10):2651-2664. doi: 10.1016/j.fuel.2010.05.012 |
[3] | HARTMANN J,WEST A J,RENFORTH P,et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide,supply nutrients,and mitigate ocean acidification[J]. Reviews of Geophysics,2013,51(2):113-149. doi: 10.1002/rog.20004 |
[4] | SECRETARY OF ENERGY ADVISORY BOARD. Report of the task force on RD&D strategy for CO2 utilization and/or negative emissions at the gigatonne scale [R]. Washington,DC:United States Department of Energy, 2016. |
[5] | POGGE VON STRANDMANN P A E,BURTON K W,SNæBJöRNSDóTTIR S O,et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes[J]. Nature Communications,2019,10(1):1983. doi: 10.1038/s41467-019-10003-8 |
[6] | BENSON S M,BENNACEUR K,COOK P,et al. Carbon Capture and Storage [M]// Global Energy Assessment:Toward a Sustainable Future. Cambridge:Cambridge University Press. 2012:993-1068. |
[7] | BACHU S. CO2 storage in geological media:role,means,status and barriers to deployment[J]. Progress in Energy and Combustion Science,2008,34(2):254-273. doi: 10.1016/j.pecs.2007.10.001 |
[8] | DE CONINCK H,BENSON S M. Carbon dioxide capture and storage:issues and prospects[J]. Annual Review of Environment and Resources,2014,39(1):243-270. doi: 10.1146/annurev-environ-032112-095222 |
[9] | ABDOLHOSSEINI QOMI M J,MILLER Q R S,ZARE S,et al. Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films[J]. Nature Reviews Chemistry,2022,6(9):598-613. doi: 10.1038/s41570-022-00418-1 |
[10] | SNæBJöRNSDóTTIR S Ó,SIGFúSSON B,MARIENI C,et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment,2020,1(2):90-102. |
[11] | GADIKOTA G. Carbon mineralization pathways for carbon capture,storage and utilization[J]. Communications Chemistry,2021,4(1):23. doi: 10.1038/s42004-021-00461-x |
[12] | SEIFRITZ W. Mirrors to halt global warming?[J]. Nature,1989,340(6235):603. |
[13] | LACKNER K S,WENDT C H,BUTT D P,et al. Carbon dioxide disposal in carbonate minerals[J]. Energy,1995,20(11):1153-1170. doi: 10.1016/0360-5442(95)00071-N |
[14] | GERDEMANN S J,DAHLIN D C,O'CONNOR W K. Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals [C]. //GALE J,KAYA Y. Greenhouse Gas Control Technologies - 6th International Conference. Kyoto,2003:677-682. |
[15] | HUIJGEN W J J,WITKAMP G J,COMANS R N J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J]. Chemical Engineering Science,2006,61(13):4242-4251. doi: 10.1016/j.ces.2006.01.048 |
[16] | BEAULIEU E,GODDéRIS Y,DONNADIEU Y,et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change,2012,2(5):346-349. doi: 10.1038/nclimate1419 |
[17] | KELEMEN P B,MATTER J. In situ carbonation of peridotite for CO2 storage[J]. Proceedings of the National Academy of Sciences,2008,105(45):17295-17300. doi: 10.1073/pnas.0805794105 |
[18] | RAJENDRAN S,NASIR S. Mapping of Moho and Moho Transition Zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique[J]. Tectonophysics,2015,657(8):63-80. |
[19] | WANG F,DREISINGER D. Status of CO2 mineralization and its utilization prospects[J]. Miner and Miner Mater,2022,1(4). |
[20] | BAŁDYGA J,HENCZKA M,SOKOLNICKA K. Utilization of carbon dioxide by chemically accelerated mineral carbonation[J]. Materials Letters,2010,64(6):702-704. doi: 10.1016/j.matlet.2009.12.043 |
[21] | BOBICKI E R,LIU Q,XU Z,et al. Carbon capture and storage using alkaline industrial wastes[J]. Progress in Energy and Combustion Science,2012,38(2):302-320. doi: 10.1016/j.pecs.2011.11.002 |
[22] | WILSON S,HARRISON A L,DIPPLE G M,et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine,western Australia:rates,controls and prospects for carbon neutral mining[J]. International Journal of Greenhouse Gas Control,2014,25(6):121-140. |
[23] | HARRISON A L,POWER I M,DIPPLE G M. Accelerated carbonation of brucite in mine tailings for carbon sequestration[J]. Environmental Science & Technology,2013,47(1):126-134. |
[24] | KIM K,KIM D,NA Y,et al. A review of carbon mineralization mechanism during geological CO2 storage[J]. Heliyon,2023,9(12):e23135. doi: 10.1016/j.heliyon.2023.e23135 |
[25] | DE HEER J. The principle of Le Châtelier and Braun[J]. Journal of Chemical Education,1957,34(8):375. doi: 10.1021/ed034p375 |
[26] | OLSSON J,BOVET N,MAKOVICKY E,et al. Olivine reactivity with CO2 and H2O on a microscale:implications for carbon sequestration[J]. Geochimica et Cosmochimica Acta,2012,77(1):86-97. |
[27] | SANDALOW D,AINES R,FRIEDMANN J,et al. Carbon Mineralization Roadmap Draft October 2021 [R]. Livermore,United States:Lawrence Livermore National Lab,2021. |
[28] | 陈霞玉,陈立辉,陈晹,等. 中国中—东部地区新生代玄武岩的分布规律与面积汇总[J].高校地质学报,2014,20(4):507-519. CHEN X Y,CHEN L H,CHEN Y,et al. Distribution summary of cenozoic basalts in central and eastern China [J]. Geological Journal of China Universities,2014,20(4):507-519. |
[29] | 李国玉,吕鸣岗. 中国含油气盆地图集 (第二版) [M]. 北京:石油工业出版社,2002. LI G Y,LYU M G. Atlas of China's Petroliferous Basins [M]. Beijing:Petroleum Industry Press,2002. |
[30] | RAZA A,GLATZ G,GHOLAMI R,et al. Carbon mineralization and geological storage of CO2 in basalt:mechanisms and technical challenges[J]. Earth-Science Reviews,2022,229(6):104036. |
[31] | WOLFF-BOENISCH D,GISLASON S R,OELKERS E H. The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates[J]. Geochimica et Cosmochimica Acta,2006,70(4):858-870. doi: 10.1016/j.gca.2005.10.016 |
[32] | COX K G,BELL J D,PANKHURST R J. The interpretation of igneous rocks [M]. Berlin:Springer Science & Business Media,2013. |
[33] | JIA J,LIANG Y,TSUJI T,et al. Ab initio molecular dynamics study of carbonation and hydrolysis reactions on cleaved quartz (001) surface[J]. The Journal of Physical Chemistry C,2019,123(8):4938-4948. doi: 10.1021/acs.jpcc.8b12089 |
[34] | GISLASON S R,HANS P E. Meteoric water-basalt interactions. I:a laboratory study[J]. Geochimica et Cosmochimica Acta,1987,51(10):2827-2840. doi: 10.1016/0016-7037(87)90161-X |
[35] | KASZUBA J P,WILLIAMS L L,JANECKY D R,et al. Immiscible CO2-H2O fluids in the shallow crust [J]. Geochemistry,Geophysics,Geosystems,2006,7(10):1-11. |
[36] | GUO J Q,LI M J,HE Y L,et al. A systematic review of supercritical carbon dioxide(S-CO2) power cycle for energy industries:technologies,key issues,and potential prospects[J]. Energy Conversion and Management,2022,258(4):115437. |
[37] | XIONG W,WELLS R K,HORNER J A,et al. CO2 Mineral sequestration in naturally porous basalt[J]. Environmental Science & Technology Letters,2018,5(3):142-147. |
[38] | GISLASON S,WOLFF-BOENISCH D,STEFANSSON A,et al. Mineral sequestration of carbon dioxide in basalt:a pre-injection overview of the CarbFix project[J]. International Journal of Greenhouse Gas Control,2010,4(3):537-545. doi: 10.1016/j.ijggc.2009.11.013 |
[39] | OELKERS E H,OELKERS E H,OELKERS E H,et al. Using stable Mg isotope signatures to assess the fate of magnesium during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland[J]. Geochimica et Cosmochimica Acta,2019,245(1):542-555. |
[40] | MCGRAIL B P,SPANE F A,AMONETTE J E,et al. Injection and monitoring at the Wallula basalt pilot project[J]. Energy Procedia,2014,63:2939-2948. doi: 10.1016/j.egypro.2014.11.316 |
[41] | WHITE S K,SPANE F A,SCHAEF H T,et al. Quantification of CO2 mineralization at the Wallula basalt pilot project[J]. Environmental Science & Technology,2020,54(22):14609-14616. |
[42] | BACHU S. Sequestration of CO2 in geological media:criteria and approach for site selection in response to climate change[J]. Energy Conversion and Management,2000,41(9):953-970. doi: 10.1016/S0196-8904(99)00149-1 |
[43] | ADU-GYAMFI B,AMPOMAH W,TU J,et al. Assessment of chemo-mechanical impacts of CO2 sequestration on the caprock formation in Farnsworth oil field,Texas[J]. Scientific Reports,2022,12(1):13023. doi: 10.1038/s41598-022-16990-x |
[44] | SONG Z,YANG L,JIANG F,et al. The mechanism of clay mineral transformation in CO2 geological storage and its impact on long-term storage potential[J]. Geoenergy Science and Engineering,2024,242(11):213192. |
[45] | WANG Z,TANG X,JING T,et al. Comparison of mineral transformation in CO2 geological storage under CO2-water-sandstone and mudstone reactions[J]. Geoenergy Science and Engineering,2024,242(11):213215. |
[46] | SAMBO C,LIU N,SHAIBU R,et al. A technical review of CO2 for enhanced oil recovery in unconventional oil reservoirs[J]. Geoenergy Science and Engineering,2023,221(2):111185. |
[47] | AL-SHARGABI M,DAVOODI S,WOOD D A,et al. Carbon dioxide applications for enhanced oil recovery assisted by nanoparticles:recent developments[J]. ACS Omega,2022,7(12):9984-9994. doi: 10.1021/acsomega.1c07123 |
[48] | ZHANG S,DEPAOLO D J,XU T,et al. Mineralization of carbon dioxide sequestered in volcanogenic sandstone reservoir rocks[J]. International Journal of Greenhouse Gas Control,2013,18(10):315-328. |
[49] | BELLO A M,AL-YASERI A,AMAO A O,et al. CO2-rock-brine interactions in feldspar-rich sandstones that underwent intense heating[J]. ACS Omega,2024,9(29):31578-31585. doi: 10.1021/acsomega.4c01256 |
[50] | BOWKER K A,SHULER P J. Carbon dioxide injection and resultant alteration of the weber sandstone,Rangely Field,Colorado[J]. AAPG Bulletin,1991,75(9):1489-1499. |
[51] | BACHU S,GUNTER W D,PERKINS E H. Aquifer disposal of CO2:hydrodynamic and mineral trapping[J]. Energy Conversion and Management,1994,35(4):269-279. doi: 10.1016/0196-8904(94)90060-4 |
[52] | ZHANG L,ZHANG T,ZHAO Y. A review of interaction mechanisms and microscopic simulation methods for CO2-water-rock system[J]. Petroleum Exploration and Development,2024,51(1):223-238. |
[53] | LERMAN A,MACKENZIE F T. Carbonate minerals and the CO2-carbonic acid system [J]. Encyclopedia of Geochemistry; Encyclopedia of Earth Sciences Series,2018,(1):206-226. |
[54] | ESPINOZA D N,SANTAMARINA J C. Clay interaction with liquid and supercritical CO2:the relevance of electrical and capillary forces[J]. International Journal of Greenhouse Gas Control,2012,10(9):351-362. |
[55] | 韦莉,田玉玲. 蒙脱石与土酸反应的实验研究[J]. 油田化学,1998,15(3):237-240. WEI L,TIAN Y L. An experimental study on reaction of montmorillonite with mud acid [J]. Oilfield Chemistry,1998,15(3):237-240. |
[56] | WU S,ZOU C,MA D,et al. Reservoir property changes during CO2-brine flow-through experiments in tight sandstone:implications for CO2 enhanced oil recovery in the Triassic Chang 7 Member tight sandstone,Ordos Basin,China[J]. Journal of Asian Earth Sciences,2019,179(8):200-210. |
[57] | BLATT H,JONES R L. Proportions of exposed igneous,metamorphic,and sedimentary rocks[J]. Geological Society of America Bulletin,1975,86(8):1085-1088. doi: 10.1130/0016-7606(1975)86<1085:POEIMA>2.0.CO;2 |
[58] | CREBFIX O. Pre-feasibility screening study for CO2 mineral storage potential in China [R]. Baejarhals 1,110 Reykjavik,Iceland:2021,1-58. |
[59] | OELKERS E H,GISLASON S R,MATTER J. Mineral carbonation of CO2[J]. Elements,2008,4(5):333-337. doi: 10.2113/gselements.4.5.333 |
[60] | MORSE J W,ARVIDSON R S. The dissolution kinetics of major sedimentary carbonate minerals[J]. Earth-Science Reviews,2002,58(1/2):51-84. doi: 10.1016/S0012-8252(01)00083-6 |
[61] | PARK A H A,FAN L S. CO2 mineral sequestration:physically activated dissolution of serpentine and pH swing process[J]. Chemical Engineering Science,2004,59(22/23):5241-5247. doi: 10.1016/j.ces.2004.09.008 |
[62] | MORSE J W,BERNER R A. Dissolution kinetics of calcium carbonate in sea water; I,a kinetic origin for the lysocline[J]. American Journal of Science,1972,272(9):840-851. doi: 10.2475/ajs.272.9.840 |
[63] | OELKERS E H. General kinetic description of multioxide silicate mineral and glass dissolution[J]. Geochimica et Cosmochimica Acta,2001,65(21):3703-3719. doi: 10.1016/S0016-7037(01)00710-4 |
[64] | OELKERS E H,SCHOTT J. An experimental study of enstatite dissolution rates as a function of pH,temperature,and aqueous Mg and Si concentration,and the mechanism of pyroxene/pyroxenoid dissolution[J]. Geochimica et Cosmochimica Acta,2001,65(8):1219-1231. doi: 10.1016/S0016-7037(00)00564-0 |
[65] | 李万伦,陈晶,贾凌霄,等. 玄武岩CO2地质封存研究进展[J]. 地质论评,2022,68(1):1-11. LI W L,CHEN J,JIA L X,et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review,2022,68(1):1-11. |
[66] | MARINI L. Chapter 7 - Reaction Path Modelling of Geological CO2 Sequestration [M]. MARINI L. Developments in Geochemistry. Amsterdam:Elsevier,2007:319-409. |
[67] | SINGHAL B B S,GUPTA R P. Hydrogeology of volcanic rocks[J]. Applied Hydrogeology of Fractured Rocks,1999:261-274. |
[68] | FENTA M C,ANTENEH Z L,SZANYI J,et al. Hydrogeological framework of the volcanic aquifers and groundwater quality in Dangila Town and the surrounding area,Northwest Ethiopia[J]. Groundwater for Sustainable Development,2020,11(10):100408. |
[69] | 王苏健,冯洁,侯恩科,等. 砂岩微观孔隙结构类型及其对含水层富水性的影响:以柠条塔井田为例[J]. 煤炭学报,2020,45(9):3236-3244. WANG S J,FENG J,HOU E K,et al. Microscopic pore structure types of sandstone and its effects on aquifer water abundance:taking in Ningtiaota coal mine as an example[J]. Journal of China Coal Society,2020,45(9):3236-3244. |
[70] | MCGRAIL B P,SCHAEF H T,HO A M,et al. Potential for carbon dioxide sequestration in flood basalts [J]. Journal of Geophysical Research:Solid Earth,2006,111:B12201. |
[71] | SNæBJöRNSDóTTIR S Ó,WIESE F,FRIDRIKSSON T,et al. CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges[J]. Energy Procedia,2014,63:4585-4600. doi: 10.1016/j.egypro.2014.11.491 |
[72] | 高志豪,夏菖佑,廖松林,等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报,2023,29(1):66-75. GAO Z H,XIA C Y,LIAO S L,et al. Progress of methods for assessing CO2 mineralization storage potential in basalt [J]. Geological Journal of China Universities,2023,29(1):66-75. |
[73] | ZHANG L,WEN R,LI F,et al. Assessment of CO2 mineral storage potential in the terrestrial basalts of China[J]. Fuel,2023,348(11):128602. |
[74] | ZHANG L. Saline aquifer storage of CO2 from natural gas reservoirs in the South China Sea:trapping mechanisms and project design[J]. China University of Petroleum (East China),2011,369(8):131744. |
[75] | 李鹏春,江静练,程锦辉,等. 广东雷州半岛火山岩二氧化碳矿化封存潜力评估[J]. 高校地质学报,2023,29(1):76-84. LI P C,JIANG J L,CHENG J H,et al. Assessment of carbon dioxide mineralization sequestration potential of volcanic rocks in Leizhou Peninsula,Guangdong Province,China [J]. Geological Journal of China Universities,2023,29(1):76-84. |
[76] | 吾尔娜,陈琦,王世伟,等. 济阳坳陷玄武岩油气藏储层的CO2封存潜力研究[J]. 西部探矿工程,2017,29(12):98-100. WU E N,CHEN Q,WANG S W,et al. Study on CO2 Sequestration Potential of Basalt Reservoir Reservoirs in Jiyang Depression [J]. West-China Exploration Engineering,2017,29(12):98-100. |
[77] | BACHU S. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control,2015,40(9):188-202. |
Schematic diagram of the mineralization process of CO2
Water-rock reactions after supercritical CO2 injection