Citation: | CHEN Shanshan, YANG Rui, LIU Xinxin, YANG Jiajia, LIU Hong, YAN Zhonghui, WANG Xiaojie, XU Huaning, ZHAO Weina. Processing of parametric array sub-bottom profiles and the application in identifying shallow gas hydrates[J]. Marine Geology Frontiers, 2023, 39(10): 77-84. doi: 10.16028/j.1009-2722.2022.316 |
Parametric array sub-bottom profile detection technology has been rapidly developed recently into an effective method for shallow gas hydrate detection due to its simple acquisition mode and high-resolution shallow strata imaging capability. To better obtain geological information on the shallow gas hydrate in the East China Sea, we performed a detailed processing of the parameter array sub-bottom profile. First, the methods of abnormal amplitude suppression and spatial amplitude equalization were combined to solve the problems of noise and energy imbalance. Then, the Hilbert transform was used to improve the stratigraphic resolution. Finally, signal enhancement technology was used to improve the continuity of the events and the resolution of wave group characteristics. The processed parameter array sub-bottom profile features high signal-to-noise ratio, good continuity, and clear stratigraphic structure, which can better reveal seismic reflection characteristics such as blank zones, gas chimneys, bright spots, and anomalies like flame, which lays the foundation for identifying shallow gas hydrate. Furthermore, seismic attributes (curvature attribute, instantaneous amplitude attribute, coherence attribute) were analyzed and result show that acoustic anomalies related to shallow gas hydrate leakage could be clearly identified. The study not only verified the feasibility of the parametric array sub-bottom profile processing method for shallow gas hydrate, but also explored the application of attribute analysis technology in the identification of shallow gas hydrate.
[1] | 赵铁虎,张志珣,许枫. 浅水区浅地层剖面测量典型问题分析[J]. 物探化探计算技术,2002,24(3):215-219. |
[2] | FRANCKY S A,KUUS P,BLASCO S,et al. Multiple failure styles related to shallow gas and fluid venting,upper slope Canadian Beaufort Sea,northern Canada[J]. Marine Geology,2014,355:136-149. doi: 10.1016/j.margeo.2014.05.014 |
[3] | VARDY M E,L'HEUREUX J S,VANNESTE M,et al. Multidisciplinary investigation of a shallow near-shore landslide,Finneidfjord,Norway[J]. Near Surface Geophysics,2012,10(4):267-277. doi: 10.3997/1873-2012022 |
[4] | ALEVIZOS E,SNELLEN M,SIMONS D,et al. Multi-angle backscatter classification and sub-bottom profiling for improved seafloor characterization[J]. Marine Geophysical Research,2018,39:289-306. doi: 10.1007/s11001-017-9325-4 |
[5] | 宋永东,杨慧良,栾振东,等. SES-2000浅地层剖面仪在福建LNG 海底管道检测中的应用[J]. 海洋地质前沿,2020,36(5):73-77. |
[6] | 刘臻. 海底管道声学探测方法中的问题分析[D]. 青岛: 中国海洋大学, 2015. |
[7] | 单晨晨,邓希光,温明明,等. 参量阵浅地层剖面仪在海底羽状流探测中的应用:以ATLAS P70 在马克兰海域调查为例[J]. 地球物理学进展,2020,35(3):1183-1190. |
[8] | 骆迪,蔡峰,闫桂京,等. 浅表层天然气水合物高分辨率地震勘探方法与应用[J]. 海洋地质前沿,2020,36(9):101-108. |
[9] | 万芃,牟泽霖. Chirp型浅地层剖面仪和参量阵浅地层剖面仪的对比分析[J]. 地质装备,2015,16(4):24-28. |
[10] | 赵铁虎,李军,张异彪,等. 舟山海域海砂资源声地层剖面探测研究[J]. 物探与化探计算技术,2011,33(3):340-345. |
[11] | HENKART P. Chirp sub-bottom profiler processing:a review[J]. Sea Technology,2006,47(10):35-38. |
[12] | 郑红波,阎贫,王彦林,等. 基于希尔伯特变换的Chirp信号浅地层剖面数据分析及转换[J]. 海洋技术,2012,31(1):91-95. |
[13] | BARADELLO L. An improved processing sequence foruncorrelated Chirp sonar data[J]. Marine Geophysical Researche,2014,35(4):337-344. doi: 10.1007/s11001-014-9220-1 |
[14] | 薛花,文鹏飞,张宝金,等. 浅剖中定位FIX号方法研究[J]. 物探化探计算技术,2014,36(1):92-94. doi: 10.3969/j.issn.1001-1749.2014.01.14 |
[15] | 薛花,杜民,尚久靖,等. 海底天然气渗漏高精度浅层剖面处理技术[J]. 物探化探计算技术,2016,38(5):660-665. |
[16] | 刘俊,吴淑玉,施剑. 南黄海地震资料叠前去噪技术应用[J]. 海洋地质与第四纪地质,2015,35(6):165-173. |
[17] | 丁维凤,冯霞,傅晓明,等. 海上单道地震与浅地层剖面数据海浪改正处理研究[J]. 海洋学报,2012,34(4):91-98. |
[18] | 刘建达,黄永林,宋文荣,等. Chirp浅剖仪在水域地质调查中的应用[J]. 防灾减灾工程学报,2010,30(2):216-221. |
[19] | 杨洋,何继善,李帝铨. 在频率域基于小波变换和Hilbert解析包络的CSEM噪声评价[J]. 地球物理学报,2018,61(1):344-357. |
[20] | 刘玉萍,李丽青,薛花,等. 短时单频脉冲震源的海洋浅地层剖面资料频移处理[J]. CT 理论与应用研究,2014,23(2):227-235. |
[21] | 陈珊珊,陈晓辉,孟祥君,等. 渤海辽东湾海域海底底形特征及控制因素[J]. 海洋地质前沿,2016,32(5):31-39. |
[22] | 陈珊珊,王中波,陆凯,等. 东海北部外陆架MIS6 以来的沉积地层格架及古环境演化[J]. 海洋地质与第四纪地质,2019,39(6):124-136. |
[23] | 陈林,宋海斌. 海底天然气渗漏的地球物理特征及识别方法[J]. 地球物理学进展,2005,20(4):1067-1073. |
[24] | 陈珊珊,王中波,张勇,等. 东海北部外陆架及邻区灾害地质体特征及成因研究[J]. 中国地质,2020,47(5):1512-1529. |
[25] | 王秀娟,吴时国,徐宁. 地震属性参数在识别天然气水合物和游离气分布模式中的应用[J]. 海洋与湖沼,2006,37(3):271-279. |
[26] | 李延,文鹏飞,张宝金,等. 频率衰减梯度属性在南海北部神狐海域天然气水合物检测中的应用[J]. 海洋地质前沿,2019,35(7):1-7. doi: 10.16028/j.1009-2722.2019.07001 |
[27] | 黄云峰,杨占龙,郭精义,等. 地震属性分析及其在岩性油气藏勘探中的应用[J]. 天然气地球科学,2006,17(5):739-742. |
[28] | 童庆佳. 地震属性在识别南海天然气水合物的应用研究[D]. 北京: 中国地质大学(北京), 2006: 1-86. |
Flowchart of the processing
Comparison before and after abnormal amplitude suppression
Comparison before and after spatial amplitude equalization
The Chirp wave shape and spectrum
Profile before and after the Hilbert transform
Comparison before and after signal enhancement
Comparison between original sub-bottom profile and processed sub-bottom profile
Blank zone reflection and flame abnormal reflection
Bright spots reflection
The sub-bottom profile and its seismic attributes