2023 Vol. 39, No. 10
Article Contents

YANG Chen, LIU Huaishan, ZHAO Mingxin, YANG Xilei, LI Fenglin, ZHANG Luocheng. Optimization design of the broadband stereo gun array[J]. Marine Geology Frontiers, 2023, 39(10): 85-92. doi: 10.16028/j.1009-2722.2022.150
Citation: YANG Chen, LIU Huaishan, ZHAO Mingxin, YANG Xilei, LI Fenglin, ZHANG Luocheng. Optimization design of the broadband stereo gun array[J]. Marine Geology Frontiers, 2023, 39(10): 85-92. doi: 10.16028/j.1009-2722.2022.150

Optimization design of the broadband stereo gun array

More Information
  • In offshore oil and gas exploration, seismic source design is the key to ensure good pickup of signals, for which air gun has become the most widely used excitation source in marine exploration due to its reliable quality, flexible combination, safety, and environmental protection. However, with the complexity of exploration environment, conventional excited wavelet of planar array is no longer to satisfy high-resolution exploration. Therefore, based on the stereoscopic array, we analyzed the relationship between wavelet signals and time of gas guns with different capacities. By optimizing the sinking depth, the amplitudes generated by the excitation of single gun with different capacities are superimposed in the same phase during receiving to broaden the frequency band and suppress the notch effect and improve the seismic source performance. By comparing the properties of the optimized stereoscopic array with the conventional array, it was proved that the broadband stereo air gun array had stronger amplitude energy and wider effective frequency band, which could suppress the notch effect obviously, and achieved better recognition results at complex geological targets.

  • 加载中
  • [1] 吴志强,闫桂京,童思友,等. 海洋地震采集技术新进展及对我国海洋油气地震勘探的启示[J]. 地球物理学进展,2013,28(6):3056-3065. doi: 10.6038/pg20130629

    CrossRef Google Scholar

    [2] GILES B F. Pneumatic acoustic energy source[J]. Geophysical Prospecting,1968,16(1):21-53. doi: 10.1111/j.1365-2478.1968.tb01959.x

    CrossRef Google Scholar

    [3] SAFAR M H. The radiation of acoustic waves from an air-gun[J]. Geophysical Prospecting,1976,24(4):756-772. doi: 10.1111/j.1365-2478.1976.tb01571.x

    CrossRef Google Scholar

    [4] PARKES G E,HATTON L,HAUGLAND T. Marine source array directivity:a new wide airgun array system[J]. First Break,1984,2(1161):9-15.

    Google Scholar

    [5] LAWS R M,HATTON L,HAARTSEN M. Computer modelling of clustured airguns[J]. First Break,1990,8(1235):331-338.

    Google Scholar

    [6] 陈浩林,宁书年,熊金良,等. 气枪阵列子波数值模拟[J]. 石油地球物理勘探,2003,38(4):363-368. doi: 10.3321/j.issn:1000-7210.2003.04.005

    CrossRef Google Scholar

    [7] 李绪宣,王建花,张金淼,等. 海上气枪震源阵列优化组合设计与应用[J]. 石油学报,2012,33(S1):142-148. doi: 10.7623/syxb2012S1017

    CrossRef Google Scholar

    [8] 王建花,李绪宣,顾汉明. 海上多子阵立体组合气枪震源优化设计[J]. 地质科技情报,2012,31(2):133-138.

    Google Scholar

    [9] 唐松华,李斌,张异彪,等. 立体阵列组合技术在南黄海盆地的应用[J]. 海洋地质前沿,2013,29(5):64-70. doi: 10.16028/j.1009-2722.2013.05.009

    CrossRef Google Scholar

    [10] 吴志强,高江涛,陈茂根,等. 南黄海盆地地震试验数据处理分析方法与成果[J]. 海洋地质前沿,2014,30(7):51-59. doi: 10.16028/j.1009-2722.2014.07.012

    CrossRef Google Scholar

    [11] 张鹏,杨凯,李欣,等. 海上空气枪点震源阵列的优化设计及应用[J]. 石油地球物理勘探,2015,50(4):588-599. doi: 10.13810/j.cnki.issn.1000-7210.2015.04.003

    CrossRef Google Scholar

    [12] 杨博,孟祥君. 基于上/下源组合思想的立体气枪阵列数值模拟与软件集成[J]. 海洋地质前沿,2016,32(7):57-63. doi: 10.16028/j.1009-2722.2016.07008

    CrossRef Google Scholar

    [13] 祁江豪,吴志强,郭兴伟,等. 大容量气枪震源在南黄海海相高速屏蔽层下VSP资料采集中的应用:以大陆架科学钻探CSDP-2井为例[J]. 地球物理学进展,2019,34(4):1661-1670. doi: 10.6038/pg2019CC0559

    CrossRef Google Scholar

    [14] CHELMINSKI S,WATSON L M,RONEN S. Low frequency pneumatic seismic sources[J]. Geophysical Prospecting,2019,67(6):1547-1556. doi: 10.1111/1365-2478.12774

    CrossRef Google Scholar

    [15] 王立明,胡毅,王喻,等. GI 枪结构震源子波模拟研究[J]. 地球物理学进展,2015,30(6):2793-2796. doi: 10.6038/pg20150644

    CrossRef Google Scholar

    [16] 王风帆. 海上立体气枪阵列信号模拟与设计方法研究[D]. 青岛: 中国海洋大学, 2015.

    Google Scholar

    [17] HUANG X,ZHANG A M,LIU Y L. Investigation on the dynamics of air-gun array bubbles based on the dual fast multipole boundary element method[J]. Ocean Engineering,2016,124:157-167. doi: 10.1016/j.oceaneng.2016.07.052

    CrossRef Google Scholar

    [18] 向涯,杨润海,谭俊卿,等. 气枪震源信号波速变化计算中的水位影响及消除[J]. 地球物理学进展,2021,36(4):1470-1476. doi: 10.6038/pg2021DD0506

    CrossRef Google Scholar

    [19] 李绪宣,温书亮,顾汉明,等. 海上气枪阵列震源子波数值模拟研究[J]. 中国海上油气,2009,21(4):215-220. doi: 10.3969/j.issn.1673-1506.2009.04.001

    CrossRef Google Scholar

    [20] 李晓东,刘怀山. 渤海海域气枪子波时空传输特征研究[J]. 工程地球物理学报,2021,18(4):436-444. doi: 10.3969/j.issn.1672-7940.2021.04.005

    CrossRef Google Scholar

    [21] 苏欣. 立体延迟气枪阵列的优化设计方法研究[D]. 北京: 中国地质大学(北京), 2020.

    Google Scholar

    [22] 刘雪芹,刘怀山,尉佳. 气枪立体震源等效深度确定方法研究[J]. 物探化探计算技术,2017,39(1):81-89. doi: 10.3969/j.issn.1001-1749.2017.01.12

    CrossRef Google Scholar

    [23] 李海军,高斌,史颖,等. 气枪震源低频拓展方法研究[J]. 物探装备,2020,30(5):306-310.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(1006) PDF downloads(134) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint