| Citation: | LUO Manlin, YIN Chengyan, Feng Minqiao, YU Yin, WANG Keke, XIONG Tingting, WU Yi, XU Shuxia. A Review of Research Advances on Treatment Technologies for Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater[J]. Rock and Mineral Analysis, 2025, 44(4): 576-597. doi: 10.15898/j.ykcs.202507150203 | 
Per- and polyfluoroalkyl substances (PFAS) have emerged as global environmental pollutants due to their extreme chemical stability, environmental persistence, and potential ecological risks. Despite their widespread industrial applications, the recalcitrant nature of PFAS leads to continuous accumulation in water bodies, soils, and organisms, posing significant environmental and health concerns. This review summarizes recent advances in conventional (e.g., adsorption, membrane separation, electrochemical oxidation) and emerging (e.g., hydrothermal alkaline treatment, plasma technology, mechanochemical degradation) PFAS wastewater treatment technologies, focusing on their mechanisms, applicability, and research progress. The review aims to analyze the degradation principles, treatment efficiency, and scalability of existing technologies while providing future optimization recommendations. Adsorption offers cost-effectiveness advantages; membrane separation avoids chemical usage; electrochemical oxidation operates under mild conditions; pyrolysis achieves complete mineralization; hydrothermal alkaline treatment demonstrates notable environmental friendliness. However, these technologies still face multiple challenges, including secondary pollution risks, high energy demands (e.g., pyrolysis and flash Joule heating), limited efficiency for short-chain PFAS (e.g., foam fractionation), and low technological maturity (e.g., ultrasonic and biodegradation). From an engineering perspective, adsorption and membrane separation have reached commercialization, while electrochemical oxidation, Fenton oxidation, and ozonation are at pilot-to-demonstration stages. Most other technologies remain confined to laboratory research. Based on current limitations, future development should prioritize: (1) novel functional materials (e.g., pH-adaptive catalysts and hybrid membranes), (2) process optimization and integration, (3) engineering improvements (e.g., continuous reactor design and energy consumption control), and (4) comprehensive environmental risk assessment. Breakthroughs in these areas will advance PFAS treatment toward higher efficiency, cost-effectiveness, and environmental sustainability.
		                | [1] | Wang H Y, Zhang H Y, He L Z, et al. Environmental behavior of per- and polyfluoroalkyl substances (PFASs) and the potential role of biochar for its remediation: A review[J]. Biochar, 2025, 7: 14. doi: 10.1007/s42773-024-00410-6 | 
| [2] | 刘雪松, 张涛, 陶艳秋, 等. 全氟烷基和多氟烷基物质检测与筛查技术研究进展[J]. 岩矿测试, 2025, 44(3): 1−16. doi: 10.15898/j.ykcs.202408120172 Liu X S, Zhang T, Tao Y Q, et al. Research progress on detection and screening techniques for perfluoroalkyl and polyfluoroalkyl substances[J]. Rock and Mineral Analysis, 2025, 44(3): 1−16. doi: 10.15898/j.ykcs.202408120172 | 
| [3] | 张春辉, 刘育, 唐佳伟, 等. 典型工业废水中全氟化合物处理技术研究进展[J]. 中国环境科学, 2021, 41(3): 1109−1118. doi: 10.19674/j.cnki.issn1000-6923.2021.0122 Zhang C H, Liu Y, Tang J W, et al. Progress of research on treatment technology of perfluorinated compounds in typical industrial wastewater[J]. China Environmental Science, 2021, 41(3): 1109−1118. doi: 10.19674/j.cnki.issn1000-6923.2021.0122 | 
| [4] | 郝丽宇, 何苗苗, 汤家喜, 等. 河流水体全氟化合物的污染现状及修复技术研究进展[J]. 生态环境学报, 2023, 32(12): 2115−2127. doi: 10.16258/j.cnki.1674-5906.2023.12.004 Hao L Y, He M M, Tang J X, et al. Research progress on pollution situation and remediation technology of perfluoroalkyl substances in river water[J]. Ecology and Environmental Sciences, 2023, 32(12): 2115−2127. doi: 10.16258/j.cnki.1674-5906.2023.12.004 | 
| [5] | 朱永乐, 汤家喜, 谭婷, 等. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 2023, 32(5): 1001−1006. doi: 10.16258/j.cnki.1674-5906.2023.05.017 Zhu Y L, Tang J X, Tan T, et al. Contaminant characteristic of per- and poly-fluorinated substances in maize in the surrounding of fluorine chemical park[J]. Ecology and Environmental Sciences, 2023, 32(5): 1001−1006. doi: 10.16258/j.cnki.1674-5906.2023.05.017 | 
| [6] | 温祥洁, 陈朝辉, 徐维新, 等. 青藏高原东北部地区表层土壤中全氟化合物的分布特征及来源解析[J]. 环境科学, 2021, 43(6): 3253−3261. doi: 10.13227/j.hjkx.202110139 Wen X J, Chen Z H, Xu W X, et al. Distribution characteristics and source apportionment of perfluoroalkyl substances in surface soils of the northeast Tibetan Plateau[J]. Environmental Science, 2021, 43(6): 3253−3261. doi: 10.13227/j.hjkx.202110139 | 
| [7] | 曾士宜, 杨鸿波, 彭洁, 等. 贵州草海湖泊表层水与沉积物中全氟化合物的污染特征及风险评估[J]. 环境化学, 2021, 40(4): 1193−1205. doi: 10.7524/jissn0254-61082020072404 Zeng S Y, Yang H B, Peng J, et al. Pollution characteristics and risk assessment of perfluorinated compounds in surface water and sediments of Caohai Lake of Guizhou Province[J]. Environmental Chemistry, 2021, 40(4): 1193−1205. doi: 10.7524/jissn0254-61082020072404 | 
| [8] | 刘勋涛, 李春阳, 陈汐昂, 等. 全氟化合物控制政策、识别控制技术及生态风险评估进展[J]. 农业环境科学学报, 2023, 42(9): 1911−1927. doi: 10.11654/jaes.2022-1066 Liu X T, Li C Y, Chen X A, et al. Development progress of perfluorinated compounds in control policy, identification and control technology, and ecological risk assessment[J]. Journal of Agro-Environment Science, 2023, 42(9): 1911−1927. doi: 10.11654/jaes.2022-1066 | 
| [9] | OECD. The OECD global PFAS database: Production and use patterns[R]. 2021. oe. cd/echemportal. | 
| [10] | 李雪玉. 一种吸附全氟化合物的材料制备及性能考查[D]. 自贡: 四川轻化工大学, 2022. Li X Y. Preparation and performance investigation of a material for adsorbing perfluorinated compounds [D]. Zigong: Sichuan University of Science & Engineering, 2022. | 
| [11] | 许罗, 林秋风, 李聪, 等. 典型全氟化合物污染现状及其处理技术研究进展[J]. 中国给水排水, 2022, 38(10): 56−62. doi: 10.19853/j.zgjsps.1000-4602.2022.10.008 Xu L, Lin Q F, Li C, et al. Current situation of typical perfluorinated compounds pollution and its treatment technology progress[J]. China Water & Wastewater, 2022, 38(10): 56−62. doi: 10.19853/j.zgjsps.1000-4602.2022.10.008 | 
| [12] | Fujii S, Polprasert C, Tanaka S, et al. New POPs in the water environment: Distribution, bioaccumulation and treatment of perfluorinated compounds: A review paper[J]. Journal of Water Supply Research and Technology-Aqua, 2007, 56(5): 313−326. doi: 10.2166/aqua.2007.005 | 
| [13] | Jiang X Z, Zhou Z M, Qin Z Q. Pilot-scale removal of PFAS from chromium-plating wastewater by anion exchange resin and activated carbon: Adsorption difference between PFOS and 6∶2 fluorotelomer sulfonate[J]. Chemical Engineering Journal, 2024, 481: 148569. doi: 10.1016/j.cej.2024.148569 | 
| [14] | Liu N, Wu C, Lyu G F, et al. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA)[J]. Science of the Total Environment, 2021, 798: 149191. doi: 10.1016/j.scitotenv.2021.149191 | 
| [15] | Elliot R, Ma Q Q, Lan G, et al. Improving the hydrophobicity of powder activated carbon to enhance the adsorption kinetics of per- and polyfluoroalkyl substances[J]. ACE ES & T Water, 2025(5): 2322−2332. doi: 10.1021/acsestwater.4c01222 | 
| [16] | Liu Z Y, Zhang P, Wei Z X, et al. Porous Fe-doped graphitized biochar: An innovative approach for co-removing per-/polyfluoroalkyl substances with different chain lengths from natural waters and wastewater[J]. Chemical Engineering Journal, 2023, 476: 146888. doi: 10.1016/j.cej.2023.146888 | 
| [17] | Liu N, Li Y H, Zhang M G, et al. Efficient adsorption of short-chain perfluoroalkyl substances by pristine and Fe/Cu-loaded reed straw biochars[J]. Science of the Total Environment, 2024, 946: 174223. doi: 10.1016/j.scitotenv.2024.174223 | 
| [18] | 孙博, 马军. 离子交换树脂对水中全氟羧酸的吸附处理[J]. 水处理技术, 2017, 43(1): 22−26. doi: 10.16796/j.cnki.1000-3770.2017.01.005 Sun B, Ma J. Removal of perfluorocarboxylic acids from water by anion exchange resins[J]. Technology of Water Treatment, 2017, 43(1): 22−26. doi: 10.16796/j.cnki.1000-3770.2017.01.005 | 
| [19] | Carter K E, Farrell J. Removal of perfluorooctane and perfluorobutane sulfonate from water via carbon adsorption and ion exchange[J]. Separation Science and Technology, 2010, 45(6): 762−767. doi: 10.1080/01496391003608421 | 
| [20] | Zhao L X, Bian J N, Zhang Y H, et al. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals[J]. Chemosphere, 2014, 114: 51−58. doi: 10.1016/j.chemosphere.2014.03.098 | 
| [21] | Chen X, Xia X H, Wang X L, et al. A comparative study on sorption of perfluorooctane sulfonate (PFOS)by chars, ash and carbon nanotubes[J]. Chemosphere, 2011, 83(10): 1313−1319. doi: 10.1016/j.chemosphere.2011.04.018 | 
| [22] | 闫妮. 碳纳米管在水环境中的悬浮稳定性及对典型全氟化合物的吸附[D]. 杨凌: 西北农林科技大学, 2021. Yan N. Colloidal stability of carbon nanotubes in aqueous environment and their adsorption of typical perfluorinated compounds[D]. Yangling: Northwest A&F University, 2021. | 
| [23] | Marina G E, James F, Oluwaseun A, et al. Mineralogical controls on PFAS and anthropogenic anions in subsurface soils and aquifers[J]. Nature Communications, 2025, 16: 3118. doi: 10.1038/s41467-025-58040-w | 
| [24] | 杜子文. 吸附处理废水中全氟化合物及高选择性氟化吸附剂的研究[D]. 北京: 清华大学, 2017. Du Z. Adsorptive removal of perfluorinated compounds from industrial wastewater and preparation of highly selective fluorinated adsorbents[D]. Beijing: Tsinghua University, 2017. | 
| [25] | 丁倩云. 有机改性膨润土处理水中全氟化合物及重金属离子的研究[D]. 兰州: 兰州交通大学, 2021. Ding Q Y. Study on the removal of perfluoroalkyl substances and heavy metal ions from water by organic modified bentonite[D]. Lanzhou: Lanzhou Jiaotong University, 2021. | 
| [26] | 樊莉. 含氟多孔有机聚合材料的室温制备及在全氟化合物分离分析中的应用研究[D]. 西安: 陕西师范大学, 2021. Fan L. Room-temperature preparation of fluorinated porous organic polymers and their application in the separation and analysis of perfluorinated compounds[D]. Xi’an: Shaanxi Normal University, 2021. | 
| [27] | Qian J, Shen M M, Wang P F, et al. Co-adsorption of perfluorooctane sulfonate and phosphate on boehmite: Influence of temperature, phosphate initial concentration and pH[J]. Ecotoxicology and Environmental Safety, 2017, 137: 71−77. doi: 10.1016/j.ecoenv.2016.11.026 | 
| [28] | Mohamed A I, Anmar G T, Satish K, et al. Effectiveness of waste-derived MIL type MOFs in removing PFOA and PFAS pollutants for environmental remediation[J]. Scientific Reports, 2025, 15: 9439. doi: 10.1038/s41598-025-93854-0 | 
| [29] | 麻春风. 磁性柱[5]芳烃多孔聚合物对全氟化合物的吸附及检测研究[D]. 武汉: 中南民族大学, 2022. Ma C F. Study on adsorption and detection of perfluorinated compounds by magnetic pillar[5]arene porous polymer[D]. Wuhan: South-Central Minzu University, 2022. | 
| [30] | 刘嘉伟. 共价有机骨架及光子晶体水凝胶对PFCs的吸附及检测研究[D]. 广州: 广州大学, 2022. Liu J W. Adsorption and detection of PFCs by covalent organic frameworks and photonic crystal hydrogels[D]. Guangzhou: Guangzhou University, 2022. | 
| [31] | Zhuo J Y, Zhu Y T, Xiao T, et al. Fluoropolymer sorbent for efficient and selective capturing of per- and poly-flurinationated compounds[J]. Nature Communications, 2024, 15: 8269. doi: 10.1038/s41467-024-52690-y | 
| [32] | Ji M, Christodoulatos C, Shi Q T, et al. Kinetic and mechanism study of PFOS removal by microscale zero valentine iron from water[J]. Environmental Science & Technology, 2025, 59(12): 6297−6306. doi: 10.1021/acs.est.4c12301 | 
| [33] | 季钰浩, 林子增, 王方方. 全氟化合物水处理技术研究进展[J]. 应用化工, 2022, 51(12): 3688−3693. doi: 10.16581/j.cnki.issn1671-3206.20221219.001 Ji Y H, Lin Z Z, Wang F F. Research progress on hazards and treatment methods of perfluorinated compounds[J]. Applied Chemical Industry, 2022, 51(12): 3688−3693. doi: 10.16581/j.cnki.issn1671-3206.20221219.001 | 
| [34] | 金海洋, 余婵, 张为, 等. 改性正渗透膜处理水中全氟化合物研究[J]. 长江科学院院报, 2023, 40(10): 44−50. doi: 10.11988/ckyyb.20220446 Jin H Y, Yu C, Zhang W, et al. Removal of perfluorinated compounds from water by modified forward osmosis membrane[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(10): 44−50. doi: 10.11988/ckyyb.20220446 | 
| [35] | 王佳璇, 孙沛东, 刘喆, 等. 无机结垢对纳滤膜分离水中全氟化合物的影响[J]. 中国环境科学, 2023, 43(1): 174−180. doi: 10.19674/j.cnki.issn1000-6923.2023.0001 Wang J X, Sun P D, Liu Z, et al. Effects of inorganic scaling on the separation of polyfluoroalkyl substances from water by nanofiltration membrane[J]. China Environmental Science, 2023, 43(1): 174−180. doi: 10.19674/j.cnki.issn1000-6923.2023.0001 | 
| [36] | 王佳璇, 胡御宁, 岳向雷, 等. 溶液特性及共存物对纳滤膜处理水中全氟辛酸的影响[J]. 中国环境科学, 2022, 42(2): 665−671. doi: 10.19674/j.cnki.issn1000-6923.2022.0021 Wang J X, Hu Y N, Yue X L, et al. Effects of solution characteristics and coexisted substances on the removal of perfluorooctanoic and from water by nanofiltration membrane[J]. China Environmental Science, 2022, 42(2): 665−671. doi: 10.19674/j.cnki.issn1000-6923.2022.0021 | 
| [37] | Zeng C H, Tanaka S, Suzuki Y, et al. Rejection of trace level perfluorohexanoic acid (PFHxA) in pure water by loose nanofiltration membrane[J]. Journal of Water and Environment Technology, 2017, 15(3): 120−127. doi: 10.2965/jwet.16-072 | 
| [38] | Yang B, Wang J, Jiang C, et al. Electrochemical mineralization of perfluorooctane sulfonate by novel F and Sb co-doped Ti/SnO2 electrode containing Sn-Sb interlayer[J]. Chemical Engineering Journal, 2017, 316: 296−304. doi: 10.1016/j.cej.2017.01.105 | 
| [39] | Schaefer C E, Andaya C, Urtiaga A, et al. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs)[J]. Journal of Hazardous Materials, 2015, 295(15): 170−175. doi: 10.1016/j.jhazmat.2015.04.024 | 
| [40] | Niu Z, Wang Y, Hui L, et al. Electrochemically enhanced removal of perfluorinated compounds (PFCs) from aqueous solution by CNTs-graphene composite electrode[J]. Chemical Engineering Journal, 2017, 328: 228−235. doi: 10.1016/j.cej.2017.07.033 | 
| [41] | 张春晖, 刘宗, 杨博, 等. 钛基改性 DSA 电极氧化法处理水中全氟化合物[J]. 环境科学学报, 2019, 39(1): 3418−3426. doi: 10.13671/j.hjkxxb.2019.0265 Zhang C H, Liu Z, Yang B, et al. Removal of perfluorinated compounds (PFCs) in aqueous solution by electrochemical oxidation with titanium-based modified dimensional stable anode[J]. Acta Scientiae Circumstantiae, 2019, 39(1): 3418−3426. doi: 10.13671/j.hjkxxb.2019.0265 | 
| [42] | Barisci S, Suri R. Electrooxidation of short and long chain perfluorocarboxylic acids using boron doped diamond electrodes[J]. Chemosphere, 2020, 243(3): 28. doi: 10.1016/j.chemosphere.2019.125349 | 
| [43] | Tang J W, Liu Z, Lu W J, et al. Electrochemical degradation of perfluorinated compounds by Ag coated Ti (Ti/Ag) anode: Electrode preparation, characterization and application[J]. Environmental Science Water Research & Technology, 2021, 7(2): 455−467. doi: 10.1039/d0ew00785d | 
| [44] | 吴坤, 周贻兵, 赵君. 全氟化合物最新检测及去除方法研究进展[J]. 贵州师范学院学报, 2023, 39(12): 29−36. doi: 10.13391/j.cnki.issn.1674-7798.2023.12.003 Wu K, Zhou Y B, Zhao J. The latest research progress on detection and removal of perfluorinated compounds[J]. Journal of Guizhou Education University, 2023, 39(12): 29−36. doi: 10.13391/j.cnki.issn.1674-7798.2023.12.003 | 
| [45] | Arima Y, Okayasu Y, Yoshioka D, et al. Multiphoton-driven photocatalytic defluorination of persistent perfluoroalkyl substances and polymers by visible light[J]. Angewandte Chemie International Edition, 2024, 63(42): e202408687. doi: 10.1002/anie.202408687 | 
| [46] | Zhang H, Chen J X, Qu J P, et al. Photocatalytic low-temperature defluorination of PFASs[J]. Nature, 2024, 635: 610−617. doi: 10.1038/s41586-024-08179-1 | 
| [47] | Teng F L, Chen S W, Tie C W, et al. Highly efficient photocatalytic degradation toward perfluorooctanoic acid by bromine doped BiOI with high exposure of (001) facet[J]. Applied Catalysis B: Environmental, 2020, 268(2): 15−23. doi: 10.1016/j.apcatb.2019.118442 | 
| [48] | Yi J Y, Li Z F, Ning X, et al. Rapid photochemical decomposition of perfluorooctanoic acid mediated by a comprehensive effect of nitrogen dioxide radicals and Fe3+/Fe2+ redox cycle[J]. Journal of Hazardous Materials, 2020, 388: 121730. doi: 10.1016/j.jhazmat.2019.121730 | 
| [49] | Tang H Q, Xiang Q Q, Lei M, et al. Efficient degradation of perfluorooctanoic acid by UV-Fenton process[J]. Chemical Engineering Journal, 2012, 184: 156−162. doi: 10.1016/j.cej.2012.01.020 | 
| [50] | Wang Y, Zhao M, Hou C, et al. Efficient degradation of perfluorooctanoic acid by solar photo-electro-Fenton like system fabricated by MOFs/carbon nanofibers composite membrane[J]. Chemical Engineering Journal, 2021, 414: 128940. doi: 10.1016/j.cej.2021.128940 | 
| [51] | Lin Y C, Panchangam S C, Chang C Y, et al. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition[J]. Journal of Hazardous Materials, 2012, 243: 272−277. doi: 10.1016/j.jhazmat.2012.10.029 | 
| [52] | Lee Y C, Chen M J, Huang C P, et al. Efficient sonochemical degradation of perfluorooctanoic acid using periodate[J]. Ultrasonics Sonochemistry, 2016, 31: 499−505. doi: 10.1016/j.ultsonch.2016.01.030 | 
| [53] | Xiao F, Sasi P C, Yao B, et al. Thermal decomposition of PFAS: Response to comment on “thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon”[J]. Environmental Science & Technology Letters, 2021, 8(4): 364−365. doi: 10.1021/acs.estlett.1c00061 | 
| [54] | Duchesne A L, Brown J K, Patch D J, et al. Remediation of PFAS-contaminated soil and granular activated carbon by smoldering combustion[J]. Environmental Science & Technology, 2020, 54(19): 12631−12640. doi: 10.1021/acs.est.0c03058 | 
| [55] | 刘明. 真空紫外/紫外(VUV/UV) 处理水中的全氟化合物研究[D]. 南宁: 广西民族大学, 2023. Liu M. Research on the removal of perfluoroalkyl and polyfluoroalkyl in water by vacuum-ultraviolet/ultraviolet (VUV/UV) process[D]. Nanning: Guangxi Minzu University, 2023. | 
| [56] | 祖蕾. 全氟化合物的生物降解研究进展[J]. 化学与生物工程, 2021, 38(10): 6−10, 15. doi: 10.3969/j.issn.1672-5425.2021.10.002 Zu L. Research progress in biodegradation of perflu-roinated compounds[J]. Chemistry & Bioengineering, 2021, 38(10): 6−10, 15. doi: 10.3969/j.issn.1672-5425.2021.10.002 | 
| [57] | Kwon B G, Lim H J, Na S H, et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant[J]. Chemosphere, 2014, 109: 221−225. doi: 10.1016/j.chemosphere.2014.01.072 | 
| [58] | Luo Q, Lu J H, Zhang H, et al. Laccase-catalyzed degradation of perfluorooctanoic acid[J]. Environment Science & Technology Letters, 2015, 2(7): 198−203. doi: 10.1021/acs.estlett.5b00119 | 
| [59] | Ruiz-Uriguen M, Shuai W, Huang S, et al. Biodegradation of PFOA in microbial electrolysis cells by Acidimicrobiaceae sp. strain A6[J]. Chemosphere, 2022(292): 133506. doi: 10.1016/j.chemosphere.2021.133506 | 
| [60] | Chetverikov S P, Sharipov D A, Korshunova T Y, et al. Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D[J]. Applied Biochemistry & Microbiology, 2017, 53(5): 533−538. doi: 10.1134/S0003683817050027 | 
| [61] | Fitzgerald N J M, Temme H R, Simcik M F, et al. Aqueous film forming foam and associated perfluoroalkyl substances inhibit methane production and co-contaminant degradation in an anaerobic microbial community[J]. Environmental Science: Processes & Impacts, 2019, 21(11): 1915−1925. doi: 10.1039/c9em00241 | 
| [62] | Hao S, Choi Y J, Wu B, et al. Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film forming foam[J]. Environmental Science Technology, 2021, 55(5): 3283−3295. doi: 10.1021/acs.est.0c06906 | 
| [63] | Trang B, Li Y, Xue X S, et al. Low-temperature mineralization of perfluorocarboxylic acids[J]. Science, 2022, 377(6608): 839−845. doi: 10.1126/science.abm8868 | 
| [64] | Zhan J X, Zhang A, Paul H, et al. Remediation of perfluorooctanoic acid (PFOA) polluted soil using pulsed corona discharge plasma[J]. Journal of Hazardous Materials, 2020, 387(5): 121688. doi: 10.1016/j.jhazmat.2019.121688 | 
| [65] | Xiao J W, Peng W, Xiao M L, et al. Enhanced degradation of PFOA in water by dielectric barrier discharge plasma in a coaxial cylindrical structure with the assistance of peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 389(3): 124381. doi: 10.1016/j.cej.2020.124381 | 
| [66] | Mahyar A, Miessner H, Mueller S, et al. Development and application of different non-thermal plasma reactors for the removal of perfluorosurfactants in water: A comparative study[J]. Plasma Chemistry & Plasma Processing, 2019, 39: 531−544. doi: 10.1007/s11090-019-09977-6 | 
| [67] | McCleaf P, Kjellgren Y, Ahrens L. Foam fractionation removal of multiple per- and polyfluoroalkyl substances from landfill leachate[J]. AWWA Water Science, 2021, 3(5): 1238. doi: 10.1002/aws2.1238 | 
| [68] | Burns D J, Stevenson P, Murphy P J C. PFAS removal from groundwaters using surface-active foam fractionation[J]. Remediation Journal, 2021, 31(4): 19−33. doi: 10.1002/rem.21694 | 
| [69] | Hu N, Zhang Z R, Wang Q, et al. Enhanced foam fractionation of perfluorooctane sulfonate (PFOS) from water using amphiphilic Janus SiO2 nanoparticle[J]. Chemical Engineering Journal, 2024, 499: 155829. doi: 10.1016/j.cej.2024.155829 | 
| [70] | 孙绍华, 孙冰, 孙家宝, 等. 全氟化合物废水处理技术研究进展[J]. 现代化工, 2023, 43(9): 29−32. doi: 10.16606/j.cnki.issn0253-4320.2023.09.007 Sun S H, Sun B, Sun J B, et al. Research progress on treatment technology for perfluorinated compounds wastewater[J]. Modern Chemical Industry, 2023, 43(9): 29−32. doi: 10.16606/j.cnki.issn0253-4320.2023.09.007 | 
| [71] | 程静, 梁光愉, 冯雯凤, 等. 水环境中短链全氟及多氟烷基化合物污染水平及其处理技术研究进展[J]. 环境化学, 2024, 43(12): 1−22. doi: 10.7524/j.issn.0254-6108.2024021501 Cheng J, Liang G Y, Feng W F, et al. Advances in pollution levels and treatment technologies of short chain per- and polyfluoroalkyl substances in aquatic environment[J]. Environmental Chemistry, 2024, 43(12): 1−22. doi: 10.7524/j.issn.0254-6108.2024021501 | 
| [72] | Yang L, Chen Z J, Goult C A, et al. Phosphate-enabled mechanochemical PFAS destruction for fluoride reuse[J]. Nature, 2025, 640(8057): 100−106. doi: 10.1038/S41586-025-08698-5. | 
| [73] | Phelecia S, Kevin M W, Yi C, et al. Mineralization of captured perfluorooctanoic acid and perfluorooctane sulfonic acid at zero net cost using flash Joule heating[J]. Nature Water, 2025, 31(3): 486−496. doi: 10.1038/s44221-025-00404-z | 
| [74] | Yousefi A, Omi F R, Yang L L, et al. Innovative hybrid approach for enhanced PFAS degradation and removal: Integrating membrane distillation, cathodic electro-Fenton, and anodic oxidation[J]. Journal of Environmental Management, 2025, 379: 124818. doi: 10.1016/j.jenvman.2025.124818 | 
| [75] | Liang Y Y, Yang L H, Tang C M, et al. Broad-spectrum capture of hundreds of per- and polyfluoroalkyl substances from fluorochemical wastewater[J]. Nature Communications, 2025, 16: 1972. doi: 10.1038/s41467-025-57272-0 | 
| [76] | Feng Z R, Fu Y X, Li J H, et al. Deep insight of the mechanism for nitrate-promoted PFASs defluorination in UV/sulfite ARP: Activation of the decarboxylation- hydroxylation-elimination-hydrolysis degradation pathway[J]. Environmental Science & Technology, 2025, 59(20): 10087−10097. doi: 10.1021/acs.est.4c14559 | 
| [77] | Veciana A, Steiner S, Tang Q, et al. Breaking the perfluorooctane sulfonate chain: Piezocatalytic decomposition of PFOS using BaTiO3 nanoparticles[J]. Small Science, 2024, 4(12): 2400337. doi: 10.1002/smsc.202400337 | 
			            
			            
			            
			        Categories of per- and polyfluoroalkyl substances
Statistical chart of the engineering maturity of various PFAS treatment technologies