Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 4
Article Contents

LUO Manlin, YIN Chengyan, Feng Minqiao, YU Yin, WANG Keke, XIONG Tingting, WU Yi, XU Shuxia. A Review of Research Advances on Treatment Technologies for Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater[J]. Rock and Mineral Analysis, 2025, 44(4): 576-597. doi: 10.15898/j.ykcs.202507150203
Citation: LUO Manlin, YIN Chengyan, Feng Minqiao, YU Yin, WANG Keke, XIONG Tingting, WU Yi, XU Shuxia. A Review of Research Advances on Treatment Technologies for Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater[J]. Rock and Mineral Analysis, 2025, 44(4): 576-597. doi: 10.15898/j.ykcs.202507150203

A Review of Research Advances on Treatment Technologies for Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater

More Information
  • Per- and polyfluoroalkyl substances (PFAS) have emerged as global environmental pollutants due to their extreme chemical stability, environmental persistence, and potential ecological risks. Despite their widespread industrial applications, the recalcitrant nature of PFAS leads to continuous accumulation in water bodies, soils, and organisms, posing significant environmental and health concerns. This review summarizes recent advances in conventional (e.g., adsorption, membrane separation, electrochemical oxidation) and emerging (e.g., hydrothermal alkaline treatment, plasma technology, mechanochemical degradation) PFAS wastewater treatment technologies, focusing on their mechanisms, applicability, and research progress. The review aims to analyze the degradation principles, treatment efficiency, and scalability of existing technologies while providing future optimization recommendations. Adsorption offers cost-effectiveness advantages; membrane separation avoids chemical usage; electrochemical oxidation operates under mild conditions; pyrolysis achieves complete mineralization; hydrothermal alkaline treatment demonstrates notable environmental friendliness. However, these technologies still face multiple challenges, including secondary pollution risks, high energy demands (e.g., pyrolysis and flash Joule heating), limited efficiency for short-chain PFAS (e.g., foam fractionation), and low technological maturity (e.g., ultrasonic and biodegradation). From an engineering perspective, adsorption and membrane separation have reached commercialization, while electrochemical oxidation, Fenton oxidation, and ozonation are at pilot-to-demonstration stages. Most other technologies remain confined to laboratory research. Based on current limitations, future development should prioritize: (1) novel functional materials (e.g., pH-adaptive catalysts and hybrid membranes), (2) process optimization and integration, (3) engineering improvements (e.g., continuous reactor design and energy consumption control), and (4) comprehensive environmental risk assessment. Breakthroughs in these areas will advance PFAS treatment toward higher efficiency, cost-effectiveness, and environmental sustainability.

  • 加载中
  • [1] Wang H Y, Zhang H Y, He L Z, et al. Environmental behavior of per- and polyfluoroalkyl substances (PFASs) and the potential role of biochar for its remediation: A review[J]. Biochar, 2025, 7: 14. doi: 10.1007/s42773-024-00410-6

    CrossRef Google Scholar

    [2] 刘雪松, 张涛, 陶艳秋, 等. 全氟烷基和多氟烷基物质检测与筛查技术研究进展[J]. 岩矿测试, 2025, 44(3): 1−16. doi: 10.15898/j.ykcs.202408120172

    CrossRef Google Scholar

    Liu X S, Zhang T, Tao Y Q, et al. Research progress on detection and screening techniques for perfluoroalkyl and polyfluoroalkyl substances[J]. Rock and Mineral Analysis, 2025, 44(3): 1−16. doi: 10.15898/j.ykcs.202408120172

    CrossRef Google Scholar

    [3] 张春辉, 刘育, 唐佳伟, 等. 典型工业废水中全氟化合物处理技术研究进展[J]. 中国环境科学, 2021, 41(3): 1109−1118. doi: 10.19674/j.cnki.issn1000-6923.2021.0122

    CrossRef Google Scholar

    Zhang C H, Liu Y, Tang J W, et al. Progress of research on treatment technology of perfluorinated compounds in typical industrial wastewater[J]. China Environmental Science, 2021, 41(3): 1109−1118. doi: 10.19674/j.cnki.issn1000-6923.2021.0122

    CrossRef Google Scholar

    [4] 郝丽宇, 何苗苗, 汤家喜, 等. 河流水体全氟化合物的污染现状及修复技术研究进展[J]. 生态环境学报, 2023, 32(12): 2115−2127. doi: 10.16258/j.cnki.1674-5906.2023.12.004

    CrossRef Google Scholar

    Hao L Y, He M M, Tang J X, et al. Research progress on pollution situation and remediation technology of perfluoroalkyl substances in river water[J]. Ecology and Environmental Sciences, 2023, 32(12): 2115−2127. doi: 10.16258/j.cnki.1674-5906.2023.12.004

    CrossRef Google Scholar

    [5] 朱永乐, 汤家喜, 谭婷, 等. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 2023, 32(5): 1001−1006. doi: 10.16258/j.cnki.1674-5906.2023.05.017

    CrossRef Google Scholar

    Zhu Y L, Tang J X, Tan T, et al. Contaminant characteristic of per- and poly-fluorinated substances in maize in the surrounding of fluorine chemical park[J]. Ecology and Environmental Sciences, 2023, 32(5): 1001−1006. doi: 10.16258/j.cnki.1674-5906.2023.05.017

    CrossRef Google Scholar

    [6] 温祥洁, 陈朝辉, 徐维新, 等. 青藏高原东北部地区表层土壤中全氟化合物的分布特征及来源解析[J]. 环境科学, 2021, 43(6): 3253−3261. doi: 10.13227/j.hjkx.202110139

    CrossRef Google Scholar

    Wen X J, Chen Z H, Xu W X, et al. Distribution characteristics and source apportionment of perfluoroalkyl substances in surface soils of the northeast Tibetan Plateau[J]. Environmental Science, 2021, 43(6): 3253−3261. doi: 10.13227/j.hjkx.202110139

    CrossRef Google Scholar

    [7] 曾士宜, 杨鸿波, 彭洁, 等. 贵州草海湖泊表层水与沉积物中全氟化合物的污染特征及风险评估[J]. 环境化学, 2021, 40(4): 1193−1205. doi: 10.7524/jissn0254-61082020072404

    CrossRef Google Scholar

    Zeng S Y, Yang H B, Peng J, et al. Pollution characteristics and risk assessment of perfluorinated compounds in surface water and sediments of Caohai Lake of Guizhou Province[J]. Environmental Chemistry, 2021, 40(4): 1193−1205. doi: 10.7524/jissn0254-61082020072404

    CrossRef Google Scholar

    [8] 刘勋涛, 李春阳, 陈汐昂, 等. 全氟化合物控制政策、识别控制技术及生态风险评估进展[J]. 农业环境科学学报, 2023, 42(9): 1911−1927. doi: 10.11654/jaes.2022-1066

    CrossRef Google Scholar

    Liu X T, Li C Y, Chen X A, et al. Development progress of perfluorinated compounds in control policy, identification and control technology, and ecological risk assessment[J]. Journal of Agro-Environment Science, 2023, 42(9): 1911−1927. doi: 10.11654/jaes.2022-1066

    CrossRef Google Scholar

    [9] OECD. The OECD global PFAS database: Production and use patterns[R]. 2021. oe. cd/echemportal.

    Google Scholar

    [10] 李雪玉. 一种吸附全氟化合物的材料制备及性能考查[D]. 自贡: 四川轻化工大学, 2022.

    Google Scholar

    Li X Y. Preparation and performance investigation of a material for adsorbing perfluorinated compounds [D]. Zigong: Sichuan University of Science & Engineering, 2022.

    Google Scholar

    [11] 许罗, 林秋风, 李聪, 等. 典型全氟化合物污染现状及其处理技术研究进展[J]. 中国给水排水, 2022, 38(10): 56−62. doi: 10.19853/j.zgjsps.1000-4602.2022.10.008

    CrossRef Google Scholar

    Xu L, Lin Q F, Li C, et al. Current situation of typical perfluorinated compounds pollution and its treatment technology progress[J]. China Water & Wastewater, 2022, 38(10): 56−62. doi: 10.19853/j.zgjsps.1000-4602.2022.10.008

    CrossRef Google Scholar

    [12] Fujii S, Polprasert C, Tanaka S, et al. New POPs in the water environment: Distribution, bioaccumulation and treatment of perfluorinated compounds: A review paper[J]. Journal of Water Supply Research and Technology-Aqua, 2007, 56(5): 313−326. doi: 10.2166/aqua.2007.005

    CrossRef Google Scholar

    [13] Jiang X Z, Zhou Z M, Qin Z Q. Pilot-scale removal of PFAS from chromium-plating wastewater by anion exchange resin and activated carbon: Adsorption difference between PFOS and 6∶2 fluorotelomer sulfonate[J]. Chemical Engineering Journal, 2024, 481: 148569. doi: 10.1016/j.cej.2024.148569

    CrossRef Google Scholar

    [14] Liu N, Wu C, Lyu G F, et al. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA)[J]. Science of the Total Environment, 2021, 798: 149191. doi: 10.1016/j.scitotenv.2021.149191

    CrossRef Google Scholar

    [15] Elliot R, Ma Q Q, Lan G, et al. Improving the hydrophobicity of powder activated carbon to enhance the adsorption kinetics of per- and polyfluoroalkyl substances[J]. ACE ES & T Water, 2025(5): 2322−2332. doi: 10.1021/acsestwater.4c01222

    CrossRef Google Scholar

    [16] Liu Z Y, Zhang P, Wei Z X, et al. Porous Fe-doped graphitized biochar: An innovative approach for co-removing per-/polyfluoroalkyl substances with different chain lengths from natural waters and wastewater[J]. Chemical Engineering Journal, 2023, 476: 146888. doi: 10.1016/j.cej.2023.146888

    CrossRef Google Scholar

    [17] Liu N, Li Y H, Zhang M G, et al. Efficient adsorption of short-chain perfluoroalkyl substances by pristine and Fe/Cu-loaded reed straw biochars[J]. Science of the Total Environment, 2024, 946: 174223. doi: 10.1016/j.scitotenv.2024.174223

    CrossRef Google Scholar

    [18] 孙博, 马军. 离子交换树脂对水中全氟羧酸的吸附处理[J]. 水处理技术, 2017, 43(1): 22−26. doi: 10.16796/j.cnki.1000-3770.2017.01.005

    CrossRef Google Scholar

    Sun B, Ma J. Removal of perfluorocarboxylic acids from water by anion exchange resins[J]. Technology of Water Treatment, 2017, 43(1): 22−26. doi: 10.16796/j.cnki.1000-3770.2017.01.005

    CrossRef Google Scholar

    [19] Carter K E, Farrell J. Removal of perfluorooctane and perfluorobutane sulfonate from water via carbon adsorption and ion exchange[J]. Separation Science and Technology, 2010, 45(6): 762−767. doi: 10.1080/01496391003608421

    CrossRef Google Scholar

    [20] Zhao L X, Bian J N, Zhang Y H, et al. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals[J]. Chemosphere, 2014, 114: 51−58. doi: 10.1016/j.chemosphere.2014.03.098

    CrossRef Google Scholar

    [21] Chen X, Xia X H, Wang X L, et al. A comparative study on sorption of perfluorooctane sulfonate (PFOS)by chars, ash and carbon nanotubes[J]. Chemosphere, 2011, 83(10): 1313−1319. doi: 10.1016/j.chemosphere.2011.04.018

    CrossRef Google Scholar

    [22] 闫妮. 碳纳米管在水环境中的悬浮稳定性及对典型全氟化合物的吸附[D]. 杨凌: 西北农林科技大学, 2021.

    Google Scholar

    Yan N. Colloidal stability of carbon nanotubes in aqueous environment and their adsorption of typical perfluorinated compounds[D]. Yangling: Northwest A&F University, 2021.

    Google Scholar

    [23] Marina G E, James F, Oluwaseun A, et al. Mineralogical controls on PFAS and anthropogenic anions in subsurface soils and aquifers[J]. Nature Communications, 2025, 16: 3118. doi: 10.1038/s41467-025-58040-w

    CrossRef Google Scholar

    [24] 杜子文. 吸附处理废水中全氟化合物及高选择性氟化吸附剂的研究[D]. 北京: 清华大学, 2017.

    Google Scholar

    Du Z. Adsorptive removal of perfluorinated compounds from industrial wastewater and preparation of highly selective fluorinated adsorbents[D]. Beijing: Tsinghua University, 2017.

    Google Scholar

    [25] 丁倩云. 有机改性膨润土处理水中全氟化合物及重金属离子的研究[D]. 兰州: 兰州交通大学, 2021.

    Google Scholar

    Ding Q Y. Study on the removal of perfluoroalkyl substances and heavy metal ions from water by organic modified bentonite[D]. Lanzhou: Lanzhou Jiaotong University, 2021.

    Google Scholar

    [26] 樊莉. 含氟多孔有机聚合材料的室温制备及在全氟化合物分离分析中的应用研究[D]. 西安: 陕西师范大学, 2021.

    Google Scholar

    Fan L. Room-temperature preparation of fluorinated porous organic polymers and their application in the separation and analysis of perfluorinated compounds[D]. Xi’an: Shaanxi Normal University, 2021.

    Google Scholar

    [27] Qian J, Shen M M, Wang P F, et al. Co-adsorption of perfluorooctane sulfonate and phosphate on boehmite: Influence of temperature, phosphate initial concentration and pH[J]. Ecotoxicology and Environmental Safety, 2017, 137: 71−77. doi: 10.1016/j.ecoenv.2016.11.026

    CrossRef Google Scholar

    [28] Mohamed A I, Anmar G T, Satish K, et al. Effectiveness of waste-derived MIL type MOFs in removing PFOA and PFAS pollutants for environmental remediation[J]. Scientific Reports, 2025, 15: 9439. doi: 10.1038/s41598-025-93854-0

    CrossRef Google Scholar

    [29] 麻春风. 磁性柱[5]芳烃多孔聚合物对全氟化合物的吸附及检测研究[D]. 武汉: 中南民族大学, 2022.

    Google Scholar

    Ma C F. Study on adsorption and detection of perfluorinated compounds by magnetic pillar[5]arene porous polymer[D]. Wuhan: South-Central Minzu University, 2022.

    Google Scholar

    [30] 刘嘉伟. 共价有机骨架及光子晶体水凝胶对PFCs的吸附及检测研究[D]. 广州: 广州大学, 2022.

    Google Scholar

    Liu J W. Adsorption and detection of PFCs by covalent organic frameworks and photonic crystal hydrogels[D]. Guangzhou: Guangzhou University, 2022.

    Google Scholar

    [31] Zhuo J Y, Zhu Y T, Xiao T, et al. Fluoropolymer sorbent for efficient and selective capturing of per- and poly-flurinationated compounds[J]. Nature Communications, 2024, 15: 8269. doi: 10.1038/s41467-024-52690-y

    CrossRef Google Scholar

    [32] Ji M, Christodoulatos C, Shi Q T, et al. Kinetic and mechanism study of PFOS removal by microscale zero valentine iron from water[J]. Environmental Science & Technology, 2025, 59(12): 6297−6306. doi: 10.1021/acs.est.4c12301

    CrossRef Google Scholar

    [33] 季钰浩, 林子增, 王方方. 全氟化合物水处理技术研究进展[J]. 应用化工, 2022, 51(12): 3688−3693. doi: 10.16581/j.cnki.issn1671-3206.20221219.001

    CrossRef Google Scholar

    Ji Y H, Lin Z Z, Wang F F. Research progress on hazards and treatment methods of perfluorinated compounds[J]. Applied Chemical Industry, 2022, 51(12): 3688−3693. doi: 10.16581/j.cnki.issn1671-3206.20221219.001

    CrossRef Google Scholar

    [34] 金海洋, 余婵, 张为, 等. 改性正渗透膜处理水中全氟化合物研究[J]. 长江科学院院报, 2023, 40(10): 44−50. doi: 10.11988/ckyyb.20220446

    CrossRef Google Scholar

    Jin H Y, Yu C, Zhang W, et al. Removal of perfluorinated compounds from water by modified forward osmosis membrane[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(10): 44−50. doi: 10.11988/ckyyb.20220446

    CrossRef Google Scholar

    [35] 王佳璇, 孙沛东, 刘喆, 等. 无机结垢对纳滤膜分离水中全氟化合物的影响[J]. 中国环境科学, 2023, 43(1): 174−180. doi: 10.19674/j.cnki.issn1000-6923.2023.0001

    CrossRef Google Scholar

    Wang J X, Sun P D, Liu Z, et al. Effects of inorganic scaling on the separation of polyfluoroalkyl substances from water by nanofiltration membrane[J]. China Environmental Science, 2023, 43(1): 174−180. doi: 10.19674/j.cnki.issn1000-6923.2023.0001

    CrossRef Google Scholar

    [36] 王佳璇, 胡御宁, 岳向雷, 等. 溶液特性及共存物对纳滤膜处理水中全氟辛酸的影响[J]. 中国环境科学, 2022, 42(2): 665−671. doi: 10.19674/j.cnki.issn1000-6923.2022.0021

    CrossRef Google Scholar

    Wang J X, Hu Y N, Yue X L, et al. Effects of solution characteristics and coexisted substances on the removal of perfluorooctanoic and from water by nanofiltration membrane[J]. China Environmental Science, 2022, 42(2): 665−671. doi: 10.19674/j.cnki.issn1000-6923.2022.0021

    CrossRef Google Scholar

    [37] Zeng C H, Tanaka S, Suzuki Y, et al. Rejection of trace level perfluorohexanoic acid (PFHxA) in pure water by loose nanofiltration membrane[J]. Journal of Water and Environment Technology, 2017, 15(3): 120−127. doi: 10.2965/jwet.16-072

    CrossRef Google Scholar

    [38] Yang B, Wang J, Jiang C, et al. Electrochemical mineralization of perfluorooctane sulfonate by novel F and Sb co-doped Ti/SnO2 electrode containing Sn-Sb interlayer[J]. Chemical Engineering Journal, 2017, 316: 296−304. doi: 10.1016/j.cej.2017.01.105

    CrossRef Google Scholar

    [39] Schaefer C E, Andaya C, Urtiaga A, et al. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs)[J]. Journal of Hazardous Materials, 2015, 295(15): 170−175. doi: 10.1016/j.jhazmat.2015.04.024

    CrossRef Google Scholar

    [40] Niu Z, Wang Y, Hui L, et al. Electrochemically enhanced removal of perfluorinated compounds (PFCs) from aqueous solution by CNTs-graphene composite electrode[J]. Chemical Engineering Journal, 2017, 328: 228−235. doi: 10.1016/j.cej.2017.07.033

    CrossRef Google Scholar

    [41] 张春晖, 刘宗, 杨博, 等. 钛基改性 DSA 电极氧化法处理水中全氟化合物[J]. 环境科学学报, 2019, 39(1): 3418−3426. doi: 10.13671/j.hjkxxb.2019.0265

    CrossRef Google Scholar

    Zhang C H, Liu Z, Yang B, et al. Removal of perfluorinated compounds (PFCs) in aqueous solution by electrochemical oxidation with titanium-based modified dimensional stable anode[J]. Acta Scientiae Circumstantiae, 2019, 39(1): 3418−3426. doi: 10.13671/j.hjkxxb.2019.0265

    CrossRef Google Scholar

    [42] Barisci S, Suri R. Electrooxidation of short and long chain perfluorocarboxylic acids using boron doped diamond electrodes[J]. Chemosphere, 2020, 243(3): 28. doi: 10.1016/j.chemosphere.2019.125349

    CrossRef Google Scholar

    [43] Tang J W, Liu Z, Lu W J, et al. Electrochemical degradation of perfluorinated compounds by Ag coated Ti (Ti/Ag) anode: Electrode preparation, characterization and application[J]. Environmental Science Water Research & Technology, 2021, 7(2): 455−467. doi: 10.1039/d0ew00785d

    CrossRef Google Scholar

    [44] 吴坤, 周贻兵, 赵君. 全氟化合物最新检测及去除方法研究进展[J]. 贵州师范学院学报, 2023, 39(12): 29−36. doi: 10.13391/j.cnki.issn.1674-7798.2023.12.003

    CrossRef Google Scholar

    Wu K, Zhou Y B, Zhao J. The latest research progress on detection and removal of perfluorinated compounds[J]. Journal of Guizhou Education University, 2023, 39(12): 29−36. doi: 10.13391/j.cnki.issn.1674-7798.2023.12.003

    CrossRef Google Scholar

    [45] Arima Y, Okayasu Y, Yoshioka D, et al. Multiphoton-driven photocatalytic defluorination of persistent perfluoroalkyl substances and polymers by visible light[J]. Angewandte Chemie International Edition, 2024, 63(42): e202408687. doi: 10.1002/anie.202408687

    CrossRef Google Scholar

    [46] Zhang H, Chen J X, Qu J P, et al. Photocatalytic low-temperature defluorination of PFASs[J]. Nature, 2024, 635: 610−617. doi: 10.1038/s41586-024-08179-1

    CrossRef Google Scholar

    [47] Teng F L, Chen S W, Tie C W, et al. Highly efficient photocatalytic degradation toward perfluorooctanoic acid by bromine doped BiOI with high exposure of (001) facet[J]. Applied Catalysis B: Environmental, 2020, 268(2): 15−23. doi: 10.1016/j.apcatb.2019.118442

    CrossRef Google Scholar

    [48] Yi J Y, Li Z F, Ning X, et al. Rapid photochemical decomposition of perfluorooctanoic acid mediated by a comprehensive effect of nitrogen dioxide radicals and Fe3+/Fe2+ redox cycle[J]. Journal of Hazardous Materials, 2020, 388: 121730. doi: 10.1016/j.jhazmat.2019.121730

    CrossRef Google Scholar

    [49] Tang H Q, Xiang Q Q, Lei M, et al. Efficient degradation of perfluorooctanoic acid by UV-Fenton process[J]. Chemical Engineering Journal, 2012, 184: 156−162. doi: 10.1016/j.cej.2012.01.020

    CrossRef Google Scholar

    [50] Wang Y, Zhao M, Hou C, et al. Efficient degradation of perfluorooctanoic acid by solar photo-electro-Fenton like system fabricated by MOFs/carbon nanofibers composite membrane[J]. Chemical Engineering Journal, 2021, 414: 128940. doi: 10.1016/j.cej.2021.128940

    CrossRef Google Scholar

    [51] Lin Y C, Panchangam S C, Chang C Y, et al. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition[J]. Journal of Hazardous Materials, 2012, 243: 272−277. doi: 10.1016/j.jhazmat.2012.10.029

    CrossRef Google Scholar

    [52] Lee Y C, Chen M J, Huang C P, et al. Efficient sonochemical degradation of perfluorooctanoic acid using periodate[J]. Ultrasonics Sonochemistry, 2016, 31: 499−505. doi: 10.1016/j.ultsonch.2016.01.030

    CrossRef Google Scholar

    [53] Xiao F, Sasi P C, Yao B, et al. Thermal decomposition of PFAS: Response to comment on “thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon”[J]. Environmental Science & Technology Letters, 2021, 8(4): 364−365. doi: 10.1021/acs.estlett.1c00061

    CrossRef Google Scholar

    [54] Duchesne A L, Brown J K, Patch D J, et al. Remediation of PFAS-contaminated soil and granular activated carbon by smoldering combustion[J]. Environmental Science & Technology, 2020, 54(19): 12631−12640. doi: 10.1021/acs.est.0c03058

    CrossRef Google Scholar

    [55] 刘明. 真空紫外/紫外(VUV/UV) 处理水中的全氟化合物研究[D]. 南宁: 广西民族大学, 2023.

    Google Scholar

    Liu M. Research on the removal of perfluoroalkyl and polyfluoroalkyl in water by vacuum-ultraviolet/ultraviolet (VUV/UV) process[D]. Nanning: Guangxi Minzu University, 2023.

    Google Scholar

    [56] 祖蕾. 全氟化合物的生物降解研究进展[J]. 化学与生物工程, 2021, 38(10): 6−10, 15. doi: 10.3969/j.issn.1672-5425.2021.10.002

    CrossRef Google Scholar

    Zu L. Research progress in biodegradation of perflu-roinated compounds[J]. Chemistry & Bioengineering, 2021, 38(10): 6−10, 15. doi: 10.3969/j.issn.1672-5425.2021.10.002

    CrossRef Google Scholar

    [57] Kwon B G, Lim H J, Na S H, et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant[J]. Chemosphere, 2014, 109: 221−225. doi: 10.1016/j.chemosphere.2014.01.072

    CrossRef Google Scholar

    [58] Luo Q, Lu J H, Zhang H, et al. Laccase-catalyzed degradation of perfluorooctanoic acid[J]. Environment Science & Technology Letters, 2015, 2(7): 198−203. doi: 10.1021/acs.estlett.5b00119

    CrossRef Google Scholar

    [59] Ruiz-Uriguen M, Shuai W, Huang S, et al. Biodegradation of PFOA in microbial electrolysis cells by Acidimicrobiaceae sp. strain A6[J]. Chemosphere, 2022(292): 133506. doi: 10.1016/j.chemosphere.2021.133506

    CrossRef Google Scholar

    [60] Chetverikov S P, Sharipov D A, Korshunova T Y, et al. Degradation of perfluorooctanyl sulfonate by strain Pseudomonas plecoglossicida 2.4-D[J]. Applied Biochemistry & Microbiology, 2017, 53(5): 533−538. doi: 10.1134/S0003683817050027

    CrossRef Google Scholar

    [61] Fitzgerald N J M, Temme H R, Simcik M F, et al. Aqueous film forming foam and associated perfluoroalkyl substances inhibit methane production and co-contaminant degradation in an anaerobic microbial community[J]. Environmental Science: Processes & Impacts, 2019, 21(11): 1915−1925. doi: 10.1039/c9em00241

    CrossRef Google Scholar

    [62] Hao S, Choi Y J, Wu B, et al. Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film forming foam[J]. Environmental Science Technology, 2021, 55(5): 3283−3295. doi: 10.1021/acs.est.0c06906

    CrossRef Google Scholar

    [63] Trang B, Li Y, Xue X S, et al. Low-temperature mineralization of perfluorocarboxylic acids[J]. Science, 2022, 377(6608): 839−845. doi: 10.1126/science.abm8868

    CrossRef Google Scholar

    [64] Zhan J X, Zhang A, Paul H, et al. Remediation of perfluorooctanoic acid (PFOA) polluted soil using pulsed corona discharge plasma[J]. Journal of Hazardous Materials, 2020, 387(5): 121688. doi: 10.1016/j.jhazmat.2019.121688

    CrossRef Google Scholar

    [65] Xiao J W, Peng W, Xiao M L, et al. Enhanced degradation of PFOA in water by dielectric barrier discharge plasma in a coaxial cylindrical structure with the assistance of peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 389(3): 124381. doi: 10.1016/j.cej.2020.124381

    CrossRef Google Scholar

    [66] Mahyar A, Miessner H, Mueller S, et al. Development and application of different non-thermal plasma reactors for the removal of perfluorosurfactants in water: A comparative study[J]. Plasma Chemistry & Plasma Processing, 2019, 39: 531−544. doi: 10.1007/s11090-019-09977-6

    CrossRef Google Scholar

    [67] McCleaf P, Kjellgren Y, Ahrens L. Foam fractionation removal of multiple per- and polyfluoroalkyl substances from landfill leachate[J]. AWWA Water Science, 2021, 3(5): 1238. doi: 10.1002/aws2.1238

    CrossRef Google Scholar

    [68] Burns D J, Stevenson P, Murphy P J C. PFAS removal from groundwaters using surface-active foam fractionation[J]. Remediation Journal, 2021, 31(4): 19−33. doi: 10.1002/rem.21694

    CrossRef Google Scholar

    [69] Hu N, Zhang Z R, Wang Q, et al. Enhanced foam fractionation of perfluorooctane sulfonate (PFOS) from water using amphiphilic Janus SiO2 nanoparticle[J]. Chemical Engineering Journal, 2024, 499: 155829. doi: 10.1016/j.cej.2024.155829

    CrossRef Google Scholar

    [70] 孙绍华, 孙冰, 孙家宝, 等. 全氟化合物废水处理技术研究进展[J]. 现代化工, 2023, 43(9): 29−32. doi: 10.16606/j.cnki.issn0253-4320.2023.09.007

    CrossRef Google Scholar

    Sun S H, Sun B, Sun J B, et al. Research progress on treatment technology for perfluorinated compounds wastewater[J]. Modern Chemical Industry, 2023, 43(9): 29−32. doi: 10.16606/j.cnki.issn0253-4320.2023.09.007

    CrossRef Google Scholar

    [71] 程静, 梁光愉, 冯雯凤, 等. 水环境中短链全氟及多氟烷基化合物污染水平及其处理技术研究进展[J]. 环境化学, 2024, 43(12): 1−22. doi: 10.7524/j.issn.0254-6108.2024021501

    CrossRef Google Scholar

    Cheng J, Liang G Y, Feng W F, et al. Advances in pollution levels and treatment technologies of short chain per- and polyfluoroalkyl substances in aquatic environment[J]. Environmental Chemistry, 2024, 43(12): 1−22. doi: 10.7524/j.issn.0254-6108.2024021501

    CrossRef Google Scholar

    [72] Yang L, Chen Z J, Goult C A, et al. Phosphate-enabled mechanochemical PFAS destruction for fluoride reuse[J]. Nature, 2025, 640(8057): 100−106. doi: 10.1038/S41586-025-08698-5.

    CrossRef Google Scholar

    [73] Phelecia S, Kevin M W, Yi C, et al. Mineralization of captured perfluorooctanoic acid and perfluorooctane sulfonic acid at zero net cost using flash Joule heating[J]. Nature Water, 2025, 31(3): 486−496. doi: 10.1038/s44221-025-00404-z

    CrossRef Google Scholar

    [74] Yousefi A, Omi F R, Yang L L, et al. Innovative hybrid approach for enhanced PFAS degradation and removal: Integrating membrane distillation, cathodic electro-Fenton, and anodic oxidation[J]. Journal of Environmental Management, 2025, 379: 124818. doi: 10.1016/j.jenvman.2025.124818

    CrossRef Google Scholar

    [75] Liang Y Y, Yang L H, Tang C M, et al. Broad-spectrum capture of hundreds of per- and polyfluoroalkyl substances from fluorochemical wastewater[J]. Nature Communications, 2025, 16: 1972. doi: 10.1038/s41467-025-57272-0

    CrossRef Google Scholar

    [76] Feng Z R, Fu Y X, Li J H, et al. Deep insight of the mechanism for nitrate-promoted PFASs defluorination in UV/sulfite ARP: Activation of the decarboxylation- hydroxylation-elimination-hydrolysis degradation pathway[J]. Environmental Science & Technology, 2025, 59(20): 10087−10097. doi: 10.1021/acs.est.4c14559

    CrossRef Google Scholar

    [77] Veciana A, Steiner S, Tang Q, et al. Breaking the perfluorooctane sulfonate chain: Piezocatalytic decomposition of PFOS using BaTiO3 nanoparticles[J]. Small Science, 2024, 4(12): 2400337. doi: 10.1002/smsc.202400337

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(8)

Article Metrics

Article views(22) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint