Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 4
Article Contents

GONG Liqiang, LI Zhihong, ZHOU Bo, ZHOU Zhengyuan. A Review of Research Progress on the Preparation and Analytical Methods of Per- and Polyfluoroalkyl Substances in Groundwater[J]. Rock and Mineral Analysis, 2025, 44(4): 562-575. doi: 10.15898/j.ykcs.202412310279
Citation: GONG Liqiang, LI Zhihong, ZHOU Bo, ZHOU Zhengyuan. A Review of Research Progress on the Preparation and Analytical Methods of Per- and Polyfluoroalkyl Substances in Groundwater[J]. Rock and Mineral Analysis, 2025, 44(4): 562-575. doi: 10.15898/j.ykcs.202412310279

A Review of Research Progress on the Preparation and Analytical Methods of Per- and Polyfluoroalkyl Substances in Groundwater

More Information
  • Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals listed as persistent organic pollutants (POPs) and emerging contaminants, drawing critical environmental concern globally. PFAS have been widely detected in aquatic environments worldwide, posing potential risks to aquatic organisms, human health, and ecological safety. The trace-level concentrations of PFAS in groundwater present significant challenges for the sensitivity and accuracy of current monitoring methods. However, existing techniques suffer from insufficient sensitivity and high operational complexity, making them inadequate for comprehensive monitoring and necessary for further optimization. To address these issues, this review reports the recent advancements in monitoring methods for typical PFAS in groundwater, focusing on sample collection, sample preparation, and analytical detection techniques. For groundwater sampling, newly developed passive sampling provides the possibility of low-cost continuous monitoring of groundwater. For groundwater sample pretreatment, new automatic technologies such as membrane solid phase extraction and dispersive solid phase extraction have greatly reduced the preparation time compared with the current SPE method. For detection methods, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is still the major option for quantitative detection of PFAS while non-targeted screening of HR-MS allows the identification of PFAS in groundwater without standards. Meanwhile, application of sensor detection provides new means for the rapid detection of groundwater in the field. Future research should focus on the development and improvement of high-throughput and automatic pretreatment methods combined with sensitive, accurate and specific detection methods for PFAS.

  • 加载中
  • [1] Evich M G, Davis M J, McCord J P, et al. Per- and polyfluoroalkyl substances in the environment[J]. Science, 2022, 375(6580): 9065. doi: 10.1126/science.abg9065

    CrossRef Google Scholar

    [2] 吴晓妍, 廖佳. 全氟化合物的环境污染及检测方法[J]. 化学世界, 2021, 62(1): 6. doi: 10.19500/j.cnki.0367-6358.20190805

    CrossRef Google Scholar

    Wu X Y, Liao J. Environment pollution and detection of perfluorochemicals[J]. Chemical World, 2021, 62(1): 6. doi: 10.19500/j.cnki.0367-6358.20190805

    CrossRef Google Scholar

    [3] 陈绩, 李彤, 吴限好, 等. 全氟与多氟烷基化合物暴露特征与健康效应研究进展[J]. 环境与职业医学, 2023, 40(8): 958−964. doi: 10.11836/JEOM22444

    CrossRef Google Scholar

    Chen J, Li T, Wu X H, et al. Review on exposure characteristics and health effects of per- and poly-fluoroalkyl substances[J]. Journal of Environmental and Occupational Medicine, 2023, 40(8): 958−964. doi: 10.11836/JEOM22444

    CrossRef Google Scholar

    [4] 朱清禾, 钱佳浩, 杨洁. 中国土壤与地下水中全氟与多氟烷基化合物分布现状[J]. 环境污染与防治, 2024, 46(6): 908−916. doi: 10.15985/j.cnki.1001-3865.202306088

    CrossRef Google Scholar

    Zhu Q H, Qian J H, Yang J. Current status of PFAS distribution in soil and groundwater across China[J]. Environmental Pollution & Control, 2024, 46(6): 908−916. doi: 10.15985/j.cnki.1001-3865.202306088

    CrossRef Google Scholar

    [5] 陈舒, 焦杏春, 盖楠, 等. 中国东部农村地区土壤及水环境中全氟化合物的组成特征和来源初探[J]. 岩矿测试, 2015, 34(5): 579−585. doi: 10.15898/j.cnki.11-2131/td.2015.05.014

    CrossRef Google Scholar

    Chen S, Jiao X C, Gai N, et al. Composition and source of perfluorinated compounds in soil and waters from the rural areas in eastern China[J]. Rock and Mineral Analysis, 2015, 34(5): 579−585. doi: 10.15898/j.cnki.11-2131/td.2015.05.014

    CrossRef Google Scholar

    [6] Tang Z W, Hamid F S, Yusoff I, et al. A review of PFAS research in Asia and occurrence of PFOA and PFOS in groundwater, surface water and coastal water in Asia[J]. Groundwater for Sustainable Development, 2023, 22: 100947. doi: 10.1016/j.gsd.2023.100947

    CrossRef Google Scholar

    [7] 王伟杰, 王洪涛. 全氟与多氟烷基化合物的生态风险现状与分析技术研究进展[J]. 岩矿测试, 2025, 44(2): 174−186. doi: 10.15898/j.ykcs.202412080252

    CrossRef Google Scholar

    Wang W J, Wang H T. Research progress on the ecological risk status and analytical techniques of per- and polyfluoroalkyl substances[J]. Rock and Mineral Analysis, 2025, 44(2): 174−186. doi: 10.15898/j.ykcs.202412080252

    CrossRef Google Scholar

    [8] 贺锦灿, 张诗韵, 苏榆媛, 等. 典型全氟有机酸类化合物的样品前处理与分析方法研究进展[J]. 色谱, 2020, 38(1): 86−94. doi: 10.3724/SP.J.1123.2019.06016

    CrossRef Google Scholar

    He J C, Zhang S Y, Su Y Y, et al. Progress on the sample techniques and analytical methods for typical perfluorinated organic acids[J]. Chinese Journal of Chromatography, 2020, 38(1): 86−94. doi: 10.3724/SP.J.1123.2019.06016

    CrossRef Google Scholar

    [9] Hepburn E, Madden C, Szabo D, et al. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct[J]. Environmental Pollution, 2019, 24: 101−113. doi: 10.1016/j.envpol.2019.02.018

    CrossRef Google Scholar

    [10] Pétré M A, Genereux D P, Koropeckyj-Cox L, et al. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in North Carolina, USA[J]. Environmental Science & Technology, 2021, 55(9): 5848−5856. doi: 10.1021/acs.est.0c07978

    CrossRef Google Scholar

    [11] 蒋沛瑀, 许宜平, 马梅, 等. 被动采样技术在水环境暴露监测评估中的应用与挑战[J]. 生态毒理学报, 2022, 17(4): 59−71. doi: 10.7524/AJE.1673-5897.20220120002

    CrossRef Google Scholar

    Jiang P Y, Xu Y P, Ma M, et al. Passive sampling in aquatic exposure assessment: Applications and challenges[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 59−71. doi: 10.7524/AJE.1673-5897.20220120002

    CrossRef Google Scholar

    [12] Kaltenberg E M, Dasu K, Lefkovitz L F, et al. Sampling of freely dissolved per- and polyfluoroalkyl substances (PFAS) in surface water and groundwater using a newly developed passive sample[J]. Environmental Pollution, 2023, 318: 120940. doi: 10.1016/j.envpol.2022.120940

    CrossRef Google Scholar

    [13] McDermett K S, Guelfo J, Anderson T A, et al. The development of diffusive equilibrium, high-resolution passive samplers to measure perfluoroalkyl substances (PFAS) in groundwater[J]. Chemosphere, 2022, 303: 134686. doi: 10.1016/j.chemosphere.2022.134686

    CrossRef Google Scholar

    [14] Gorji S G, Ramos M J G, Dewapriya P, et al. New PFASs identified in AFFF impacted groundwater by passive sampling and nontarget analysis[J]. Environmental Science & Technology, 2024, 58(3): 1690−1699. doi: 10.1021/acs.est.3c06591

    CrossRef Google Scholar

    [15] 刘明睿, 汪伶俐, 陈亮. 超高效液相色谱串联质谱法快速测定地下水和含水层介质中16种全氟烷基酸[J]. 地学前缘, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    CrossRef Google Scholar

    Liu M R, Wang L L, Chen L. Quick analysis of sixteen PFAAs in groundwater and aquifer by ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Earth Science Frontiers, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    CrossRef Google Scholar

    [16] 朱晓玲, 赵颖, 白立雯. 超高效液相色谱-质谱法测定地下水中全氟辛酸(PFOA)和全氟辛基磺酸(PFOS)[J]. 化学研究与应用, 2022, 34(12): 3004−3008. doi: 10.3969/j.issn.1004-1656.2022.12.030

    CrossRef Google Scholar

    Zhu X L, Zhao Y, Bai L W. Determination of perfluorooctane acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater by ultra-high performance liquid chromatography-mass spectrometry[J]. Chemical Research and Application, 2022, 34(12): 3004−3008. doi: 10.3969/j.issn.1004-1656.2022.12.030

    CrossRef Google Scholar

    [17] Bautista A, Björnsdotter M, Sáez C, et al. Determination of persistent and mobile organic compounds in the river–groundwater interface of the Besòs River Delta, Spain, using a wide extraction approach[J]. Chemosphere, 2024, 368: 143673. doi: 10.1016/j.chemosphere.2024.143673

    CrossRef Google Scholar

    [18] 孙腾飞, 向垒, 陈雷, 等. 环境水样及固相样品中全氟化合物分析方法研究进展[J]. 分析化学, 2017, 45(4): 601−610. doi: 10.11895/j.issn.0253-3820.160817

    CrossRef Google Scholar

    Sun T F, Xiang L, Chen L, et al. Research progresses of determination of perfluorinated compounds in environmental water and solid samples[J]. Chinese Journal of Analytical Chemistry, 2017, 45(4): 601−610. doi: 10.11895/j.issn.0253-3820.160817

    CrossRef Google Scholar

    [19] 杨愿愿, 李偲琳, 赵建亮, 等. 超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全/多氟化合物[J]. 分析化学, 2022, 50(8): 1243−1251,139−144. doi: 10.19756/j.issn.0253-3820.210621

    CrossRef Google Scholar

    Yang Y Y, Li S L, Zhao J L, et al. Determination of 57 kinds of per- and polyfluoroalkyl substances in waters, sediments and biological samples by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1243−1251,139−144. doi: 10.19756/j.issn.0253-3820.210621

    CrossRef Google Scholar

    [20] 陈永艳, 吕佳, 张岚, 等. 在线固相萃取-超高效液相色谱-三重四极杆质谱法测定水源水和饮用水中107种典型农药及代谢产物[J]. 色谱, 2022, 40(12): 1064−1075. doi: 10.3724/SP.J.1123.2022.07011

    CrossRef Google Scholar

    Chen Y Y, Lyu J, Zhang L, et al. Determination of 107 typical pesticides and metabolites in raw water and drinking water by online-solid phase extraction coupled with ultra performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2022, 40(12): 1064−1075. doi: 10.3724/SP.J.1123.2022.07011

    CrossRef Google Scholar

    [21] Getzinger G J, Ferguson P L. High-throughput trace-level suspect screening for per- and polyfluoroalkyl substances in environmental waters by peak-focusing online solid phase extraction and high-resolution mass spectrometry[J]. ACS ES&T Water, 2021, 1(5): 1240−1251. doi: 10.1021/acsestwater.0c00309

    CrossRef Google Scholar

    [22] 王巧环, 熊满艳, 孟龄, 等. 在线固相萃取-高效液相色谱-串联质谱法测定地表水中8种全氟化合物[J]. 环境化学, 2023, 42(2): 388−398. doi: 10.7524/j.issn.0254-6108.2022082401

    CrossRef Google Scholar

    Wang Q H, Xiong M Y, Meng L, et al. Determination of 8 perfluorinated compounds in surface water by on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2023, 42(2): 388−398. doi: 10.7524/j.issn.0254-6108.2022082401

    CrossRef Google Scholar

    [23] 姚志建, 顾凯丽, 李涛, 等. 基于膜式固相萃取的水体全氟化合物检测方法研究[J]. 环境科技, 2024, 37(2): 40−45. doi: 10.3969/j.issn.1674-4829.2024.02.008

    CrossRef Google Scholar

    Yao Z J, Gu K L, Li T, et al. Study on detection method of PFASs in water based on membrane solid phase extraction[J]. Environmental Science and Technology, 2024, 37(2): 40−45. doi: 10.3969/j.issn.1674-4829.2024.02.008

    CrossRef Google Scholar

    [24] Ng K, Alygizakis N, Androulakakis A, et al. Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River Basin[J]. Journal of Hazardous Materials, 2022, 436: 129276. doi: 10.1016/j.jhazmat.2022.129276

    CrossRef Google Scholar

    [25] Aparicio I, Martín J, Santos J L, et al. Stir bar sorptive extraction and liquid chromatography-tandem mass spectrometry determination of polar and non-polar emerging and priority pollutants in environmental waters[J]. Journal of Chromatography A, 2017, 1500: 43−52. doi: 10.1016/j.chroma.2017.04.007

    CrossRef Google Scholar

    [26] Olomukoro A A, Emmons R V, Godage N H, et al. Ion exchange solid phase microextraction coupled to liquid chromatography/laminar flow tandem mass spectrometry for the determination of perfluoroalkyl substances in water samples[J]. Journal of Chromatography A, 2021, 1651: 462335. doi: 10.1016/j.chroma.2021.462335

    CrossRef Google Scholar

    [27] Bach C, Boiteux V, Hemard J, et al. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry[J]. Journal of Chromatography A, 2016, 1448: 98−106. doi: 10.1016/j.chroma.2016.04.025

    CrossRef Google Scholar

    [28] 宋新力, 王宁, 何飞燕, 等. 碳纳米管复合材料结合分散固相萃取-高效液相色谱-串联质谱法检测环境水样中痕量全氟化合物[J]. 色谱, 2023, 41(5): 409−416. doi: 10.3724/SP.J.1123.2022.09016

    CrossRef Google Scholar

    Song X L, Wang N, He F Y, et al. Determination of trace perfluorinated compounds in environmental water samples by dispersive solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry using carbon nanotube composite materials[J]. Chinese Journal of Chromatography, 2023, 41(5): 409−416. doi: 10.3724/SP.J.1123.2022.09016

    CrossRef Google Scholar

    [29] Petromelidou S, Zoi T, Alampanos V, et al. Dispersive solid phase extraction of 18 PFAS from environmental water samples using a novel MOF-polymeric monolith composite followed by high-resolution mass spectrometry analysis[J]. Microchemical Journal, 2024, 207: 111795. doi: 10.1016/j.microc.2024.111795

    CrossRef Google Scholar

    [30] Zhou Y S, He Z Y, Tao Y, et al. Preparation of a functional silica membrane coated on Fe3O4 nanoparticle for rapid and selective removal of perfluorinated compounds from surface water sample[J]. Chemical Engineering Journal, 2016, 303: 156−166. doi: 10.1016/j.cej.2016.05.137

    CrossRef Google Scholar

    [31] Ayala-Cabrera J F, Moyano E, Santos F J. Gas chromatography and liquid chromatography coupled to mass spectrometry for the determination of fluorotelomer olefins, fluorotelomer alcohols, perfluoroalkyl sulfonamides and sulfonamido-ethanols in water[J]. Journal of Chromatography A, 2020, 1609: 460463. doi: 10.1016/j.chroma.2019.460463

    CrossRef Google Scholar

    [32] Trojanowicz M, Koc M. Recent developments in methods for analysis of perfluorinated persistent pollutants[J]. Microchimica Acta, 2013, 180: 957−971. doi: 10.1007/s00604-013-1046-z

    CrossRef Google Scholar

    [33] 吴建刚, 龙强, 肖文, 等. 环境水样中全氟磺酸类和全氟羧酸类化合物分析方法研究进展[J]. 环境化学, 2018, 37(8): 1851−1859. doi: 10.7524/j.issn.0254-6108.2017122901

    CrossRef Google Scholar

    Wu J G, Long Q, Xiao W, et al. Analytical methods of perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) in environmental water samples[J]. Environmental Chemistry, 2018, 37(8): 1851−1859. doi: 10.7524/j.issn.0254-6108.2017122901

    CrossRef Google Scholar

    [34] 王晓研, 沈伟健, 王红, 等. 气相色谱-负化学源-质谱法检测水中10种全氟羧酸化合物[J]. 色谱, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019

    CrossRef Google Scholar

    Wang X Y, Shen W J, Wang H, et al. Determination of 10 perfluorinated carboxylic acid compounds in water by gas chromatography-mass spectrometry coupled with negative chemical ionization[J]. Chinese Journal of Chromatography, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019

    CrossRef Google Scholar

    [35] Liu M, Munoz G, Vo D S, et al. Per- and polyfluoroalkyl substances in contaminated soil and groundwater at airports: A Canadian case study[J]. Environmental Science & Technology, 2022, 56(2): 885−895. doi: 10.1021/acs.est.1c04798

    CrossRef Google Scholar

    [36] Silver M, Phelps W, Masarik K, et al. Prevalence and source tracing of PFAS in shallow groundwater used for drinking water in Wisconsin, USA[J]. Environmental Science & Technology, 2023, 57(45): 17415−17426. doi: 10.1021/acs.est.3c02826

    CrossRef Google Scholar

    [37] Jensen C R, Genereux D P, Solomon D K, et al. Forecasting and hindcasting PFAS concentrations in groundwater discharging to streams near a PFAS production facility[J]. Environmental Science & Technology, 2024, 58(40): 17926−17936. doi: 10.1021/acs.est.4c06697

    CrossRef Google Scholar

    [38] Geiger M J, Morrison J M, Carmack D J, et al. A high-throughput small volume matrix based calibration using isotope dilution liquid chromatography tandem mass spectrometry analysis for 42 per and polyfluoroalkyl substances in groundwater[J]. Journal of Chromatography A, 2024, 1716: 464633. doi: 10.1016/j.chroma.2024.464633

    CrossRef Google Scholar

    [39] Cáñez T T, Guo B, McIntosh J C, et al. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) in groundwater at a reclaimed water recharge facility[J]. Science of the Total Environment, 2021, 791: 147906. doi: 10.1016/j.scitotenv.2021.147906

    CrossRef Google Scholar

    [40] McFarlan E L, Lemke L D. Per- and polyfluoroalkyl substances (PFAS) fate and transport across a groundwater-surface water interface[J]. Science of the Total Environment, 2024, 951: 175672. doi: 10.1016/j.scitotenv.2024.175672

    CrossRef Google Scholar

    [41] Zeng J, Liu K, Liu X, et al. Driving factor, source identification, and health risk of PFAS contamination in groundwater based on the self-organizing map[J]. Water Research, 2024, 267: 122458. doi: 10.1016/j.watres.2024.122458

    CrossRef Google Scholar

    [42] Sadia M, Kunz M, Ter L T, et al. Forever legacies? Profiling historical PFAS contamination and current influence on groundwater used for drinking water[J]. Science of the Total Environment, 2023, 890: 164420. doi: 10.1016/j.scitotenv.2023.164420

    CrossRef Google Scholar

    [43] 陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499−510. doi: 10.15898/j.cnki.11-2131/td.202111300190

    CrossRef Google Scholar

    Chen D, Zhang Z H, Zhao W, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Beijing[J]. Rock and Mineral Analysis, 2022, 41(3): 499−510. doi: 10.15898/j.cnki.11-2131/td.202111300190

    CrossRef Google Scholar

    [44] Xu B, Liu S, Zhou J L, et al. PFAS and their substitutes in groundwater: occurrence, transformation and remediation[J]. Journal of Hazardous Materials, 2021, 412: 125159. doi: 10.1016/j.jhazmat.2021.125159

    CrossRef Google Scholar

    [45] Zhao Z, Li J, Zhang X, et al. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome[J]. Environmental Science and Pollution Research, 2022, 29(33): 49513−49533. doi: 10.1007/s11356-022-20755-4

    CrossRef Google Scholar

    [46] 王振聚, 罗忻, 梁生康, 等. 高分辨质谱技术在全氟多氟化合物分析中的应用研究进展[J]. 分析测试学报, 2022, 41(6): 931−940. doi: 10.19969/j.fxcsxb.22022006

    CrossRef Google Scholar

    Wang Z J, Luo X, Liang S K, et al. Research progress on application of high-resolution mass spectrometry in analysis of PFAS[J]. Journal of Instrumental Analysis, 2022, 41(6): 931−940. doi: 10.19969/j.fxcsxb.22022006

    CrossRef Google Scholar

    [47] Rehnstam S, Czeschka M B, Ahren L. Suspect screening and total oxidizable precursor (TOP) assay as tools for characterization of per- and polyfluoroalkyl substance (PFAS)-contaminated groundwater and treated landfill leachate[J]. Chemosphere, 2023, 334: 138925. doi: 10.1016/j.chemosphere.2023.138925

    CrossRef Google Scholar

    [48] Rehnstam S, Smith S J, Ahrens L. Suspect and non-target screening of per- and polyfluoroalkyl substances (PFAS) and other halogenated substances in electrochemically oxidized landfill leachate and groundwater[J]. Journal of Hazardous Materials, 2024, 480: 136316. doi: 10.1016/j.jhazmat.2024.136316

    CrossRef Google Scholar

    [49] Liu S, Junaid M, Zhong W, et al. A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry[J]. Chemosphere, 2020, 251: 126327. doi: 10.1016/j.chemosphere.2020.126327

    CrossRef Google Scholar

    [50] 韩亚萌, 郭丽莉, 王蓓丽, 等. 水环境中全氟化合物的传感检测方法研究进展[J]. 环境化学, 2023, 42(9): 3112−3124. doi: 10.7524/j.issn.0254-6108.2022032902

    CrossRef Google Scholar

    Han Y M, Guo L L, Wang B L, et al. Research progress on sensing methods for the detection of perfluorinated compounds in water environment[J]. Environmental Chemistry, 2023, 42(9): 3112−3124. doi: 10.7524/j.issn.0254-6108.2022032902

    CrossRef Google Scholar

    [51] 于开宁, 王润忠, 刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    CrossRef Google Scholar

    Yu K N, Wang R Z, Liu D D. A review of rapid detections for emerging contaminants in groundwater[J]. Rock and Mineral Analysis, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    CrossRef Google Scholar

    [52] Niu H, Wang S, Zhou Z, et al. Sensitive colorimetric visualization of perfluorinated compounds using poly (ethylene glycol) and perfluorinated thiols modified gold nanoparticles[J]. Analytical Chemistry, 2014, 86(9): 4170−4177. doi: 10.1021/ac403406d

    CrossRef Google Scholar

    [53] 李晶, 刘璐, 郭会琴, 等. 基于氟-氟相互作用的上转换荧光法快速测定水中的全氟辛烷磺酸[J]. 分析化学, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639

    CrossRef Google Scholar

    Li J, Liu L, Guo H Q, et al. An upconversion fluorescent method for rapid detection of perfluorooctane sulfonate in water samples based on fluorine-fluorine interaction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639

    CrossRef Google Scholar

    [54] Chen B, Yang Z, Qu X, et al. Screening and discrimination of perfluoroalkyl substances in aqueous solution using a luminescent metal–organic framework sensor array[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47706−47716. doi: 10.1021/acsami.1c15528

    CrossRef Google Scholar

    [55] Harrison E E, Waters M L. Detection and differentiation of per- and polyfluoroalkyl substances (PFAS) in water using a fluorescent imprint-and-report sensor array[J]. Chemical Science, 2023, 14(4): 928−936. doi: 10.1039/D2SC05685B

    CrossRef Google Scholar

    [56] 王宝丽, 张逸君, 张宇航, 等. 生物炭基材料及其在电化学传感领域的应用[J]. 岩矿测试, 2024, 43(6): 967−981. doi: 10.15898/j.ykcs.202403170058

    CrossRef Google Scholar

    Wang B L, Zhang Y J, Zhang Y H, et al. Research progress of biochar based materials and their applications using electrochemical sensors[J]. Rock and Mineral Analysis, 2024, 43(6): 967−981. doi: 10.15898/j.ykcs.202403170058

    CrossRef Google Scholar

    [57] Karimian N, Stortini A M, Moretto L M, et al. Electrochemosensor for trace analysis of perfluorooctanesulfonate in water based on a molecularly imprinted poly (o-phenylenediamine) polymer[J]. ACS Sensors, 2018, 3(7): 1291−1298. doi: 10.1021/acssensors.8b00154

    CrossRef Google Scholar

    [58] Cheng Y H, Barpaga D, Soltis J A, et al. Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10503−10514. doi: 10.1021/acsami.9b22445

    CrossRef Google Scholar

    [59] Lu D, Zhu D Z, Gan H, et al. An ultra-sensitive molecularly imprinted polymer (MIP) and gold nanostars (AuNS) modified voltammetric sensor for facile detection of perfluorooctance sulfonate (PFOS) in drinking water[J]. Sensors and Actuators B: Chemical, 2022, 352: 131055. doi: 10.1016/j.snb.2021.131055

    CrossRef Google Scholar

    [60] Cho S, Remucal C K, Wei H. Common and distinctive Raman spectral features for the identification and differentiation of per- and polyfluoroalkyl substances[J]. ACS ES&T Water, 2024, 5(1): 300−309. doi: 10.1021/acsestwater.4c00847

    CrossRef Google Scholar

    [61] Park H, Park J, Kim W, et al. Ultra-sensitive SERS detection of perfluorooctanoic acid based on self-assembled p-phenylenediamine nanoparticle complex[J]. Journal of Hazardous Materials, 2023, 453: 131384. doi: 10.1016/j.jhazmat.2023.131384

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(11) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint