Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 4
Article Contents

JI Yiping, WANG Weihua, SONG Zhou, YANG Jie, ZHOU Yuqi, ZHAO Xiran, CAO Ben. Analytical Methods and Optimization of Pretreatment Processes for Short- and Medium-Chain and Novel Perfluoro/Polyfluoroalkyl Substances in Water[J]. Rock and Mineral Analysis, 2025, 44(4): 598-611. doi: 10.15898/j.ykcs.202504230102
Citation: JI Yiping, WANG Weihua, SONG Zhou, YANG Jie, ZHOU Yuqi, ZHAO Xiran, CAO Ben. Analytical Methods and Optimization of Pretreatment Processes for Short- and Medium-Chain and Novel Perfluoro/Polyfluoroalkyl Substances in Water[J]. Rock and Mineral Analysis, 2025, 44(4): 598-611. doi: 10.15898/j.ykcs.202504230102

Analytical Methods and Optimization of Pretreatment Processes for Short- and Medium-Chain and Novel Perfluoro/Polyfluoroalkyl Substances in Water

More Information
  • With the production and use of long-chain per- and polyfluoroalkyl substances (PFAS) being restricted, short- and medium-chain as well as new alternative PFAS have been widely detected in water environments, and their ecological and health risks have drawn urgent attention. However, the current detection standard system is still not perfect. Traditional solid-phase extraction (SPE) technology has the advantages of a low detection limit and strong anti-interference ability, but it has disadvantages such as long-time consumption, high cost and easy contamination in practical application. Here, a method for the determination of 18 trace short- and medium-chain (ng/L level) and new PFAS in environmental water, including 7 perfluorocarboxylic acids, 4 perfluorosulfonic acids and 7 new alternatives, by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established by direct injection after filtration. The effects of sample protectants, filter membranes, injection solvents and injection bottle materials were systematically investigated. The results showed that the addition of 10% methanol could significantly improve the stability of the sample. The adsorption behavior of five filter membranes (regenerated cellulose, polyethersulfone, polytetrafluoroethylene, mixed cellulose and nylon) in 4 solvent systems was studied. It was found that the nylon membrane had the highest adsorption rate (above 90%) in pure water and 10% methanol-water solution system, while the regenerated cellulose membrane had the lowest adsorption rate, making it the best filter membrane for this method. For the large volume injection of this method (50μL), 10% methanol-water solution was the ideal injection solvent, and polypropylene injection bottles had the best storage effect. This method has the following advantages: (1) It is simple and fast, with direct injection after filtration, no solid-phase extraction and concentration process, and the sample pretreatment time for a single sample is less than 5min, which has more than 10 times the efficiency of the traditional SPE pretreatment method; (2) It is low-cost, reducing solvent consumption and the use of solid-phase extraction columns and other consumables; (3) Since the sample pretreatment only involves filtration, it not only reduces the possible loss links but also significantly reduces the risk of contamination. This method can be applied to the rapid monitoring of trace PFAS in environmental water, especially suitable for large-scale environmentally targeted screening and emergency monitoring scenarios. However, for PFAS samples with concentrations lower than 0.7ng/L, the quantitative accuracy is challenged due to the limitation of instrument sensitivity.

  • 加载中
  • [1] 陈森, 王新皓, 徐翊宸, 等. 市政污水处理系统中不同工艺段多氟/全氟烷基化合物(PFASs)的赋存、转化和去除[J]. 环境化学, 2023, 42(7): 2228−2241. doi: 10.7524/j.issn.0254-6108.2022111007

    CrossRef Google Scholar

    Chen S, Wang X H, Xu Y C, et al. Review on the occurrence, transformation and removal of per- and polyfluoroalkyl substances (PFASs) in different process segments of sewage wastewater treatment systems[J]. Environmental Chemistry, 2023, 42(7): 2228−2241. doi: 10.7524/j.issn.0254-6108.2022111007

    CrossRef Google Scholar

    [2] 孙梦颖, 胡君, 李想, 等. 中国全氟和多氟烷基化合物(PFASs)环境污染、健康风险及监管现状[J]. 生态毒理学报, 2024, 19(6): 35−47. doi: 10.7524/AJE.1673-5897.20240522001

    CrossRef Google Scholar

    Sun M Y, Hu J, Li X, et al. Environmental pollution, health risks, and regulatory status of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in China[J]. Asian Journal of Ecotoxicology, 2024, 19(6): 35−47. doi: 10.7524/AJE.1673-5897.20240522001

    CrossRef Google Scholar

    [3] Hagenaars A, Vergauwen L, Coen W D, et al. Structure–activity relationship assessment of four perfluorinated chemicals sing a prolonged Zebrafish early life stage test[J]. Chemosphere, 2011, 82(5): 764−772. doi: 10.1016/j.chemosphere.2010.10.076

    CrossRef Google Scholar

    [4] 程哲宇, 刘艳娜, 曲广波, 等. 高效液相色谱-高分辨质谱法检测全氟烷基羧酸的方法优化[J]. 环境化学, 2025, 44(9): 1−11. doi: 10.7524/j.issn.0254-6108.2024042606

    CrossRef Google Scholar

    Cheng Z Y, Liu Y N, Qu G B, et al. Optimization of an analytical method for perfluoroalkyl carboxylic acids using high-performance liquid chromatography-high resolution mass spectrometry[J]. Environmental Chemistry, 2025, 44(9): 1−11. doi: 10.7524/j.issn.0254-6108.2024042606

    CrossRef Google Scholar

    [5] Pan Y T, Wang J H, Yeung L W Y, et al. Analysis of emerging per- and polyfluoroalkyl substances: Progress and current issues[J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115481. doi: 10.1016/j.trac.2019.04.013

    CrossRef Google Scholar

    [6] Gagliano E, Sgroi M, Falciglia P P, et al. Removal of poly-and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration[J]. Water Research, 2020, 171: 115381. doi: 10.1016/j.watres.2019.115381

    CrossRef Google Scholar

    [7] Huang K H, Li Y L, Bu D, et al. Trophic magnification of short-chain per- and polyfluoroalkyl substances in a terrestrial food chain from the Tibetan Plateau[J]. Environmental Science & Technology Letters, 2022, 9(2): 147−152. doi: 10.1021/acs.estlett.1c01009

    CrossRef Google Scholar

    [8] Garnett J, Halsall C, Vader A, et al. High concentrations of perfluoroalkyl acids in Arctic seawater driven by early thawing sea ice[J]. Environmental Science & Technology, 2021, 55(16): 11049−11059. doi: 10.1021/acs.est.1c01676

    CrossRef Google Scholar

    [9] Macinnis J, de Silva A O, Lehnherr I, et al. Investigation of perfluoroalkyl substances in proglacial rivers and permafrost seep in a high Arctic watershed[J]. Environmental Science: Processes & Impacts, 2022, 24(1): 42−51. doi: 10.1039/D1EM00349F

    CrossRef Google Scholar

    [10] 张苗苗, 田芹, 安子怡, 等. 环境中全氟和多氟烷基化合物来源、分析方法及分布特征研究进展[J]. 环境科学研究, 2025, 38(3): 677−687. doi: 10.13198/j.issn.1001-6929.2025.01.04

    CrossRef Google Scholar

    Zhang M M, Tian Q, An Z Y, et al. Research progress on the sources, analysis methods and occurrence characteristics of per- and polyfluoroalkyl substances in the environment[J]. Research of Environmental Sciences, 2025, 38(3): 677−687. doi: 10.13198/j.issn.1001-6929.2025.01.04

    CrossRef Google Scholar

    [11] 王伟杰, 王洪涛. 全氟与多氟烷基化合物的生态风险现状与分析技术研究进展[J]. 岩矿测试, 2025, 44(2): 174−186. doi: 10.15898/j.ykcs.202412080252

    CrossRef Google Scholar

    Wang W J, Wang H T. Research progress on the ecological risk status and analytical techniques of per- and polyfluoroalkyl substances[J]. Rock and Mineral Analysis, 2025, 44(2): 174−186. doi: 10.15898/j.ykcs.202412080252

    CrossRef Google Scholar

    [12] Chen Y, Wei L, Luo W, et al. Occurrence, spatial distribution, and sources of PFASs in the water and sediment from lakes in the Tibetan Plateau[J]. Journal of Hazardous Materials, 2023, 443: 130−170. doi: 10.1016/j.jhazmat.2022.130170

    CrossRef Google Scholar

    [13] Du Z W, Deng S B, Chen Y G, et al. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins[J]. Journal of Hazardous Materials, 2015, 286: 136−143. doi: 10.1016/j.jhazmat.2014.12.037

    CrossRef Google Scholar

    [14] 王若男, 史箴, 胥倩, 等. 四川省地市级饮用水源地全氟化合物污染状况调查研究[J]. 环境化学, 2025, 44(10): 1−11. doi: 10.7524/j.issn.0254-6108.2024051005

    CrossRef Google Scholar

    Wang R N, Shi Z, Xu Q, et al. Occurrence of perfluoroalkyl substances in drinking water sources at prefecture and municipal levels in Sichuan Province[J]. Environmental Chemistry, 2025, 44(10): 1−11. doi: 10.7524/j.issn.0254-6108.2024051005

    CrossRef Google Scholar

    [15] 程静, 梁光愉, 冯雯凤, 等. 水环境中短链全氟及多氟烷基化合物污染水平及其处理技术研究进展[J]. 环境化学, 2024, 43(12): 4022−4043. doi: 10.7524/j.issn.0254-6108.2024021501

    CrossRef Google Scholar

    Cheng J, Liang G Y, Feng W F, et al. Advances in pollution levels and treatment technologies of short chain per- and polyfluoroalkyl substances in aquatic environment[J]. Environmental Chemistry, 2024, 43(12): 4022−4043. doi: 10.7524/j.issn.0254-6108.2024021501

    CrossRef Google Scholar

    [16] Lenka S P, Kah M, Padhye L. Losses of ultrashort- and short-chain PFAS to polypropylene materials[J]. ACS Environmental Science and Technology Water, 2023(3): 2700−2706. doi: 10.1021/acsestwater.3c00191

    CrossRef Google Scholar

    [17] He K, Feerick A, Jin H Y, et al. Retention of per- and polyfluoroalkyl substances by syringe filters[J]. Environmental Chemistry Letters, 2024, 22(4): 1569−1579. doi: 10.1007/s10311-024-01718-2

    CrossRef Google Scholar

    [18] 陈丽平, 俞霞, 王佳希, 等. 针头式过滤器对全(多)氟化合物的过滤损失及影响因素分析[J]. 环境化学, 2025, 44(11): 1−8. doi: 10.7524/j.issn.0254-6108.2024070902

    CrossRef Google Scholar

    Chen L P, Yu X, Wang J X, et al. Analysis of filtration loss and influencing factors of syringefilters for per- and polyfluoroalkyl substances[J]. Environmental Chemistry, 2025, 44(11): 1−8. doi: 10.7524/j.issn.0254-6108.2024070902

    CrossRef Google Scholar

    [19] 董文洪, 杨海, 令狐文生. 串联液质联用仪测定水中全氟辛酸和全氟辛烷磺酸的影响因素分析[J]. 化学世界, 2017, 58(1): 1−6. doi: 10.19500/j.cnki.0367-6358.2017.01.001

    CrossRef Google Scholar

    Dong W H, Yang H, Linghu W S. Influential factor for analysis of perfluorooctanoate and perfluorooctane sulfonate in aqueous solution by HPLC-MS/MS method[J]. Chemical World, 2017, 58(1): 1−6. doi: 10.19500/j.cnki.0367-6358.2017.01.001

    CrossRef Google Scholar

    [20] 孙燕霞. 改性尼龙6对典型性全氟化合物的吸附[D]. 绍兴: 绍兴文理学院, 2019.

    Google Scholar

    Sun Y X. Adsorption of typical perfluorinated compounds by modified nylon-6[D]. Shaoxing: Shaoxing University, 2019.

    Google Scholar

    [21] Folorunsho O, Kizhakkethil J P, Bogush A, et al. Effect of short-term sample storage and preparatory conditions on losses of 18 per- and polyfluoroalkyl substances (PFAS) to container materials[J]. Chemosphere, 2024, 363: 142814. doi: 10.1016/j.chemosphere.2024.142814

    CrossRef Google Scholar

    [22] Lenka S P, Kah M, Padhye L P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. Water Research, 2021, 199: 117187. doi: 10.1016/j.watres.2021.117187

    CrossRef Google Scholar

    [23] Wang T, Vestergren R, Herzke D, et al. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese Rivers[J]. Environmental Science & Technology, 2016, 50(21): 11584−11592. doi: 10.1021/acs.est.6b03752

    CrossRef Google Scholar

    [24] Zenobio J E, Salawu O A, Han Z, et al. Adsorption of per- and polyfluoroalkyl substances (PFAS) to containers[J]. Journal of Hazardous Materials Advances, 2022, 7: 100130. doi: 10.1016/j.hazadv.2022.100130

    CrossRef Google Scholar

    [25] 陈永艳, 吕佳, 叶必雄, 等. 在线固相萃取-超高效液相色谱-串联质谱法测定水源水和饮用水中51种全氟和多氟烷基物质[J/OL]. 色谱 (2025-04-18) [2025-04-23]. http://kns.cnki.net/kcms/detail/21.1185.O6.20250417.1750.004.html.

    Google Scholar

    Chen Y Y, Lyu J, Ye B X, et al. Determination of 51 per- and polyfluoroalkyl substances in raw water and drinking water by online solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry[J/OL]. Chinese Journal of Chromatography (2025-04-18) [2025-04-23]. http://kns.cnki.net/kcms/detail/21.1185.O6.20250417.1750.004.html.

    Google Scholar

    [26] 龚利强, 李志鸿, 周波, 等. 地下水中全氟和多氟烷基化合物分析方法研究进展[J/OL]. 岩矿测试 (2025-03-27) [2025-04-23]. https://doi.org/10.15898/j.ykcs.202412310279.

    Google Scholar

    Gong L Q, Li Z H, Zhou B, et al. Research progress on the preparation and analytical methods of per- and polyfluoroalkyl substances in groundwater[J/OL]. Rock and Mineral Analysis (2025-03-27) [2025-04-23]. https://doi.org/10.15898/j.ykcs.202412310279.

    Google Scholar

    [27] 王国庆, 王维维, 张凤杰. 固相萃取-液相色谱-串联质谱法测定水中17种全氟化合物[J]. 分析科学学报, 2024, 40(6): 709−714. doi: 10.13526/j.issn.1006-6144.2024.06.017

    CrossRef Google Scholar

    Wang G Q, Wang W W, Zhang F J. Determination of 17 perfluorinated compounds in water by solid phase extraction with liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Science, 2024, 40(6): 709−714. doi: 10.13526/j.issn.1006-6144.2024.06.017

    CrossRef Google Scholar

    [28] 刘明睿, 汪伶俐, 陈亮, 等. 超高效液相色谱串联质谱法快速测定地下水和含水层介质中16种全氟烷基酸[J]. 地学前缘, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    CrossRef Google Scholar

    Liu M R, Wang L L, Chen L, et al. Quick analysis of sixteen PFAAs in groundwater and aquifer by ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Earth Science Frontiers, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    CrossRef Google Scholar

    [29] 吴宇峰, 刘殿甲, 张静, 等. 水中12种全氟化合物的快速分析方法[C]//中国环境科学学会. 2019中国环境科学学会科学技术年会论文集(第三卷). 2019: 171−175.

    Google Scholar

    [30] 吴萍, 王炜, 刘惠敏, 等. 超高效液相色谱-串联质谱法测定复杂水质中25种全氟/多氟化合物[J]. 化学分析计量, 2025, 34(1): 12−20. doi: 10.3969/j.issn.1008-6145.2025.01.003

    CrossRef Google Scholar

    Wu P, Wang W, Liu H M, et al. Determination of 25 per- and polyfluoroalkyl substances in complex water by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chemical Analysis and Meterage, 2025, 34(1): 12−20. doi: 10.3969/j.issn.1008-6145.2025.01.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(6)

Article Metrics

Article views(5) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint