Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 4
Article Contents

LI Xiaoya, ZHANG Yongtao, ZUO Haiying, ZHANG Jing. Determination of 36 Kinds of Halogenated Flame Retardants in Soils by GC/MS with an Accelerated Solvent Extraction-Online Purification Method[J]. Rock and Mineral Analysis, 2025, 44(4): 612-627. doi: 10.15898/j.ykcs.202506070154
Citation: LI Xiaoya, ZHANG Yongtao, ZUO Haiying, ZHANG Jing. Determination of 36 Kinds of Halogenated Flame Retardants in Soils by GC/MS with an Accelerated Solvent Extraction-Online Purification Method[J]. Rock and Mineral Analysis, 2025, 44(4): 612-627. doi: 10.15898/j.ykcs.202506070154

Determination of 36 Kinds of Halogenated Flame Retardants in Soils by GC/MS with an Accelerated Solvent Extraction-Online Purification Method

More Information
  • Halogenated flame retardants (HFRs) are persistent organic pollutants and have attracted much attention due to their bioaccumulation, long-range migration, and potential health risks. HFRs usually exist in trace levels in soil. Due to the complex soil matrix, severe interference, and significant differences in polarity, thermal stability, etc. among different types of HFRs, it brings challenges to the synchronous and accurate analysis of multiple types of HFRs. In the actual environment, HFRs often exist in the form of combined pollution. Therefore, it is necessary to establish an analytical method for the simultaneous extraction and detection of multiple HFRs to effectively monitor their residual levels in the soil environment. A method for the simultaneous analysis of 36 kinds of HFRs including polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), dechlorane plus (DPs), polychlorinated biphenyls (PCBs) in soil has been established. By adding ethylenediamine-N-propyl (PSA) and Florisil to the sample through matrix solid-phase dispersion extraction (MSPDE), organic acids, pigments, lipids and polar interfering substances can be effectively removed, reducing matrix interference. After the samples were thoroughly ground for 5min, accelerated solvent extraction (ASE) was conducted at 80℃ and 1500psi using n-hexane-dichloromethane (1∶1, V/V) as the extraction solvent, static extraction for 10min, and two extraction cycles. After extraction and purification of the samples, the matrix interference was significantly reduced, and the recovery of each compound was higher than 60%. Using diatomite instead of the sample and undergoing the same pretreatment process to prepare the matrix-matching solution for the calibration curve effectively reduced the interference introduced in the experimental process. After correction by this curve, the recoveries of Syn-DP, Anti-DP, PBDE 206, and PBDE209 reached 72.8% to 123.5%. This method had a good linear relationship among PBBs, DPs and PCBs within the concentration range of 10–500μg/L (PBDEs: 50–500μg/L), with a coefficient of determination (R2) of no less than 0.998 and a detection limit of 0.15–4.5μg/kg. The method was applied to spiked actual samples, with recoveries ranging from 65.9% to 132.1%, and relative standard deviations (RSD) ranging from 2.1% to 24.3%, meeting the requirements of relevant standards and being suitable for the analysis of large quantities of complex samples.

  • 加载中
  • [1] Abdallah M A E, Drage D, Harrad S. A one-step extraction/clean-up method for determination of PCBs, PBDEs and HBCDs in environmental solid matrices[J]. Environmental Science: Processes and Impacts, 2013, 15(12): 2279−2287. doi: 10.1039/c3em00395g

    CrossRef Google Scholar

    [2] Lipičar E, Fras D, Javernik N, et al. Simultaneous method for selected PBDEs and HBCDDs in foodstuffs using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry[J]. Toxics, 2023, 11(1): 15. doi: 10.3390/toxics11010015

    CrossRef Google Scholar

    [3] Alaee M, Arias P, Sjödin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release[J]. Environment International, 2003, 29: 683−689. doi: 10.1016/S0160-4120(3)00121-1

    CrossRef Google Scholar

    [4] Sun Q, Gao H, Li P, et al. Perinatal exposure to PBDE-47 decreases brain glucose metabolism in male adult rats: Associations with shifts in triiodothyronine and neurobehavior[J]. Environmental Chemistry and Ecotoxicology, 2025, 7: 84−96. doi: 10.1016/j.enceco.2024.11.002

    CrossRef Google Scholar

    [5] Cecil K M, Xu Y Y, Chen A M, et al. Gestational PBDE concentrations and executive function in adolescents with self- and caregiver-report: The HOME study[J]. Environmental Research, 2025, 273: 121256. doi: 10.1016/j.envres.2025.121256

    CrossRef Google Scholar

    [6] Karakus F, Tanrıverdi Z, Kuzu B. Mechanisms of developmental neurotoxicity of dechlorane plus, a recently identified persistent organic pollutant: An in silico study[J]. Neuro Toxicology, 2025, 108: 318−327. doi: 10.1016/j.neuro.2025.04.013

    CrossRef Google Scholar

    [7] Hoffman S S, Liang D H, Hood R B, et al. Assessing metabolic differences associated with exposure to polybrominated biphenyl and polychlorinated biphenyls in the Michigan PBB Registry[J]. Environmental Health Perspectives, 2023, 131(10): 107005. doi: 10.1289/EHP12657

    CrossRef Google Scholar

    [8] 曹文庚, 王妍妍, 张栋, 等. 工业废水去除重金属技术的研究现状与进展[J]. 中国地质, 2023, 50(3): 756−776. doi: 10.12029/gc20221128002

    CrossRef Google Scholar

    Cao W G, Wang Y Y, Zhang D, et al. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 2023, 50(3): 756−776. doi: 10.12029/gc20221128002

    CrossRef Google Scholar

    [9] Thuy T L, Hoang T D, Hoang V H, et al. A review on flame retardants in soils: Occurrence, environmental impact, health risks, remediation strategies, and future perspectives[J]. Toxics, 2025, 13(3): 228. doi: 10.3390/toxics13030228

    CrossRef Google Scholar

    [10] Qiu X H, Zhu T, Hu J X. Polybrominated diphenyl ethers (PBDEs) and other flame retardants in the atmosphere and water from Taihu Lake, East China[J]. Chemosphere, 2010, 80(10): 1207−1212. doi: 10.1016/j.chemosphere.2010.06.013

    CrossRef Google Scholar

    [11] 付建平, 谢丹平, 杨艳艳, 等. 电子垃圾拆解废气中PBDEs特征与污染控制效果[J]. 中国环境科学, 2024, 44(2): 654−662. doi: 10.19674/j.cnki.issn1000-6923.2024.0043

    CrossRef Google Scholar

    Fu J P, Xie D P, Yang Y Y, et al. Emission characteristics and pollution controlling efficiency of polybrominated diphenyl ethers (PBDEs) in exhausted gases from dismantling processes of electronic waste[J]. China Environmental Science, 2024, 44(2): 654−662. doi: 10.19674/j.cnki.issn1000-6923.2024.0043

    CrossRef Google Scholar

    [12] Yang C Y, Duan L, Wang J, et al. Preferential association of PBDEs and PAHs with mineral particles vs. dissolved organic carbon: Implications for groundwater contamination at e-waste sites[J]. Journal of Environmental Sciences, 2025, 150: 288−296. doi: 10.1016/j.jes.2024.03.007

    CrossRef Google Scholar

    [13] Liu W L, Hong P P, Chen J C, et al. Dechlorane plus and its related compounds in residential indoor dust from the Quzhou City: Occurrence and human exposure[J]. Atmospheric Pollution Research, 2025, 16(4): 102435. doi: 10.1016/j.apr.2025.102435

    CrossRef Google Scholar

    [14] Wang H, Yu S Y, Walker T R, et al. Characterization, distribution, sources and health risks of dechlorane plus (DP) in urban street dust of Shenyang City, China[J]. Environmental Geochemistry and Health, 2025, 47(6): 230. doi: 10.1007/s10653-025-02551-4

    CrossRef Google Scholar

    [15] 曹文庚, 王妍妍, 张亚南, 等. 含微塑料地下水的污染现状、环境风险及其发展趋势[J]. 中国地质, 2024, 51(6): 1895−1916. doi: 10.12029/gc20231028001

    CrossRef Google Scholar

    Cao W G, Wang Y Y, Zhang Y N, et al. Pollution status, environmental risk and development trend of groundwater containing microplastics[J]. Geology in China, 2024, 51(6): 1895−1916. doi: 10.12029/gc20231028001

    CrossRef Google Scholar

    [16] 朱帅, 沈亚婷, 潘萌, 等. 微波辅助提取 GC-MS/MS 测定复杂基质底泥中德克隆类化合物及处理效果初探[J]. 岩矿测试, 2025, 44(2): 1−15. doi: 10.15898/j.ykcs.202409190197

    CrossRef Google Scholar

    Zhu S, Shen Y T, Pan M, et al. Investigation on the determination of dechlorane plus compounds in complex matrix sludge using microwave-assisted extraction coupled with GC-MS/MS and evaluation of treatment efficiency[J]. Rock and Mineral Analysis, 2025, 44(2): 1−15. doi: 10.15898/j.ykcs.202409190197

    CrossRef Google Scholar

    [17] Lin Y J, Feng C, Xu Q, et al. A validated method for rapid determination of dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in human milk: Focus on utility of tandem solid phase extraction (SPE) cleanup[J]. Analytical and Bioanalytical Chemistry, 2016, 408: 4897−4906. doi: 10.1007/s00216-016-9576-y

    CrossRef Google Scholar

    [18] 龚飞杰, 齐安安, 李一凡, 等. 快速溶剂-固相萃取法测定土壤中多溴联苯醚[J]. 山东大学学报(工学版), 2025, 55(1): 149−156. doi: 10.6040/j.issn.1672-3961.0.2023.327

    CrossRef Google Scholar

    Gong F J, Qi A A, Li Y F, et al. Determination of PBDEs in soil by high performance solvent extraction-solid phase extraction[J]. Journal of Shandong University (Engineering Science), 2025, 55(1): 149−156. doi: 10.6040/j.issn.1672-3961.0.2023.327

    CrossRef Google Scholar

    [19] Hajeb P, Castaño A, Cequier E, et al. Critical review of analytical methods for the determination of flame retardants in human matrices[J]. Analytica Chimica Acta, 2022, 1193: 338828. doi: 10.1016/j.aca.2021.338828

    CrossRef Google Scholar

    [20] 张浩, 黄荣浪, 陈旻彦, 等. 超声提取-气相色谱-质谱法对土壤中多种类持久性有机污染物的同时测定[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 336−350. doi: 10.3785/j.issn.1008-9209.2021.04.072

    CrossRef Google Scholar

    Zhang H, Huang R L, Chen M Y, et al. Simultaneous determination of multiple persistent organic pollutants in soil by ultrasonic extract-gas chromatography-mass spectrometry[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2022, 48(3): 336−350. doi: 10.3785/j.issn.1008-9209.2021.04.072

    CrossRef Google Scholar

    [21] 裴镜澄, 吴明红, 向甲甲, 等. 加速溶剂萃取-同步净化/气相色谱-质谱法检测沉积物中4种新型溴代阻燃剂[J]. 分析测试学报, 2014, 33(7): 773−779. doi: 10.3969/j.issn.1004-4957.2014.07.006

    CrossRef Google Scholar

    Pei J C, Wu M H, Xiang J J, et al. Determination of four kinds of novel brominated flame retardants in sediments by gas chromatography-mass spectrometry combined with accelerated solvent extraction-synchronous purification[J]. Journal of Instrumental Analysis, 2014, 33(7): 773−779. doi: 10.3969/j.issn.1004-4957.2014.07.006

    CrossRef Google Scholar

    [22] 谢慧, 常晓云, 马钰涵, 等. 土壤和大米中得克隆检测方法的研究[J]. 农业环境科学学报, 2020, 39(11): 2692−2698. doi: 10.11654/jaes.2020-0542

    CrossRef Google Scholar

    Xie H, Chang X Y, Ma Y H, et al. Study on the detection method of dechlorane plus residue in soil and rice[J]. Journal of Agro-Environment Science, 2020, 39(11): 2692−2698. doi: 10.11654/jaes.2020-0542

    CrossRef Google Scholar

    [23] Portet-Koltalo F, Tian Y, Berger-Brito I, et al. Determination of multi-class polyaromatic compounds in sediments by a simple modified matrix solid phase dispersive extraction[J]. Talanta, 2021, 221: 121601. doi: 10.1016/j.talanta.2020.121601

    CrossRef Google Scholar

    [24] Iparraguirre A, Rodil R, Quintana J B, et al. Matrix solid-phase dispersion of polybrominated diphenyl ethers and their hydroxylated and methoxylated analogues in lettuce, carrot and soil[J]. Journal of Chromatography A, 2014, 1360: 57−65. doi: 10.1016/j.chroma.2014.07.079

    CrossRef Google Scholar

    [25] Dirtu A C, Abdallah M, Covaci A. Advances in the sample preparation of brominated flame retardants and other brominated compounds[J]. TrAC Trends in Analytical Chemistry, 2013, 43: 189−203. doi: 10.1016/j.trac.2012.10.004

    CrossRef Google Scholar

    [26] Abdul K H, Abas F, Mediani A, et al. Comparison of ASE with in-cell cleanup and the QuEChERS sample preparation methods for the analysis of pesticide residues in tea[J]. International Food Research Journal, 2017, 24(1): 261−267.

    Google Scholar

    [27] Kinross A D, Hageman K J, Doucette W J, et al. Comparison of accelerated solvent extraction (ASE) and energized dispersive guided extraction (EDGE) for the analysis of pesticides in leaves[J]. Journal of chromatography A, 2020, 1627: 461414. doi: 10.1016/j.chroma.2020.461414

    CrossRef Google Scholar

    [28] 王庆芝, 赵洪霞, 王琰, 等. 气相色谱法测定及预测有机磷阻燃剂的蒸气压[J]. 色谱, 2017, 35(9): 1008−1013. doi: 10.3724/SP.J.1123.2017.05015

    CrossRef Google Scholar

    Wang Q Z, Zhao H X, Wang Y, et al. Determination and prediction for vapor pressures of organophosphate flame retardants by gas chromatography[J]. Chinese Journal of Chromatography, 2017, 35(9): 1008−1013. doi: 10.3724/SP.J.1123.2017.05015

    CrossRef Google Scholar

    [29] Phan K, Mouakkad L, Juma T, et al. A contemporary gas chromatography-electron capture detection (GC-ECD) method for regulatory analysis of polybrominated diphenyl ethers (PBDEs) in unfiltered secondary-treated wastewater[J]. Journal of chromatography A, 2025, 1757: 466141. doi: 10.1016/j.chroma.2025.466141

    CrossRef Google Scholar

    [30] 李丰, 彭维超, 梁莉. 气相色谱-质谱联用测定塑料玩具中多溴联苯和多溴联苯醚[J]. 塑料科技, 2022, 50(3): 79−83. doi: 10.15925/j.cnki.issn1005-3360.2022.03.019

    CrossRef Google Scholar

    Li F, Peng W C, Liang L. Determination of PBBs and PBDEs in plastic toys by gas chromatography-mass spectrometry[J]. Plastics Science and Technology, 2022, 50(3): 79−83. doi: 10.15925/j.cnki.issn1005-3360.2022.03.019

    CrossRef Google Scholar

    [31] Nenin T, Mitrović T, Petković A, et al. Validation of the GCMS method for the determination of polychlorinated biphenyls congeners in soil and sediment samples[J]. Microchemical Journal, 2024, 207: 111761. doi: 10.1016/j.microc.2024.111761

    CrossRef Google Scholar

    [32] 牛禾, 余彬彬, 饶钦全, 等. 高效液相色谱串联质谱法分析土壤中多溴联苯醚类化合物[J]. 中国环境监测, 2019, 35(6): 118−123.

    Google Scholar

    Niu H, Yu B B, Rao Q Q, et al. Determination of polybrominated diphenyl ethers in soil with liquid chromatography tandem mass spectrometry[J]. Environmental Monitoring in China, 2019, 35(6): 118−123.

    Google Scholar

    [33] Li X J, Yang R, Bai Z J, et al. Development of QuEChERS based on the Z-Sep+ and DLLME method for analysis of PBDEs in chicken eggs by GC-MS/MS[J]. Food Chemistry, 2025, 467: 142361. doi: 10.1016/j.foodchem.2024.142361

    CrossRef Google Scholar

    [34] 郭冀峰, 程凯, 李靖, 等. 多氯联苯污染土壤的微生物降解技术研究进展[J]. 安全与环境学报, 2023, 23(9): 3337−3346. doi: 10.13637/j.issn.1009-6094.2022.0989

    CrossRef Google Scholar

    Guo J F, Cheng K, Li J, et al. Research progress of microbial remediation technology for polychlorinated biphenyl-contaminated soil[J]. Journal of Safety and Environment, 2023, 23(9): 3337−3346. doi: 10.13637/j.issn.1009-6094.2022.0989

    CrossRef Google Scholar

    [35] Björklund J, Tollbäck P, Hiärne C, et al. Influence of the injection technique and the column system on gas chromatographic determination of polybrominated diphenyl ethers[J]. Journal of Chromatography A, 2004, 1041: 201−210. doi: 10.1016/j.chroma.2004.04.025

    CrossRef Google Scholar

    [36] Dumitras M, Maftei D, Airinei A, et al. NPK analysis of the thermal degradation of decabromodiphenylether[J]. Revista de Chimie, 2017, 68(11): 2734−2738. doi: 10.37358/rc.17.11.5965

    CrossRef Google Scholar

    [37] 张付海, 陈鑫, 田丙正, 等. 加速溶剂同时萃取和净化-气相色谱-三重四极杆串联质谱测定土壤和沉积物中8种多溴联苯醚[J]. 中国环境监测, 2019, 35(4): 141−148. doi: 10.19316/j.issn.1002-6002.2019.04.17

    CrossRef Google Scholar

    Zhang F H, Chen X, Tian B Z, et al. Determination of 8 PBDEs in soil and sediment by accelerated solvent simultaneous extraction and clean-up with gas chromatography-triple quadrupole mass spectrometry[J]. Environmental Monitoring in China, 2019, 35(4): 141−148. doi: 10.19316/j.issn.1002-6002.2019.04.17

    CrossRef Google Scholar

    [38] 占永超, 吴易峰, 徐敦明, 等. QuEChERS-气相色谱-串联质谱测定食品中的多溴联苯和多溴二苯醚类阻燃剂[J]. 分析科学学报, 2023, 39(1): 73−80. doi: 10.13526/j.issn.1006-6144.2023.01.012

    CrossRef Google Scholar

    Zhan Y C, Wu Y F, Xu D M, et al. Determination of polybrominated biphenyls and polybrominated diphenyl ethers in food by QuEChERS-gas chromatography tandem mass spectrometry[J]. Journal of Analytical Science, 2023, 39(1): 73−80. doi: 10.13526/j.issn.1006-6144.2023.01.012

    CrossRef Google Scholar

    [39] 平华, 赵天宇, 马智宏, 等. 分散固相萃取-超高效液相色谱-串联质谱法同时测定土壤中新烟碱类农药及其代谢物的残留量[J]. 理化检验(化学分册), 2023, 59(11): 1276−1283. doi: 10.11973/lhjy-hx202311006

    CrossRef Google Scholar

    Ping H, Zhao T Y, Ma Z H, et al. Simultaneous determination of residues of neonicotinoid pesticides and their metabolites in soil by ultra-high performance liquid chromatography- tandem mass spectrometry with disperse solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2023, 59(11): 1276−1283. doi: 10.11973/lhjy-hx202311006

    CrossRef Google Scholar

    [40] 王俊霞, 徐思婕, 孙悦莹, 等. 基于响应面法的基质固相分散萃取土壤中有机磷阻燃剂[J]. 色谱, 2024, 42(1): 64−74. doi: 10.3724/SP.J.1123.2023.04018

    CrossRef Google Scholar

    Wang J X, Xu S J, Sun Y Y, et al. Matrix solid-phase dispersion extraction of organophosphorus flame retardants in soil based on response surface methodology[J]. Chinese Journal of Chromatography, 2024, 42(1): 64−74. doi: 10.3724/SP.J.1123.2023.04018

    CrossRef Google Scholar

    [41] 郑晓燕, 于建钊, 许秀艳, 等. 同位素稀释-高分辨气相色谱/高分辨质谱法测定大气中多溴联苯醚和多溴联苯153[J]. 色谱, 2015, 33(10): 1071−1097. doi: 10.3724/SP.J.1123.2015.05018

    CrossRef Google Scholar

    Zheng X Y, Yu J Z, Xu X Y, et al. Determination of atmospheric polybrominated diphenyl ethers and polybrominated biphenyl 153 using isotope dilution-high resolution gas chromatography/high resolution mass spectrometry[J]. Chinese Journal of Chromatography, 2015, 33(10): 1071−1097. doi: 10.3724/SP.J.1123.2015.05018

    CrossRef Google Scholar

    [42] 张莉, 张永涛, 李桂香, 等. 基质标准校正-气相色谱-质谱法同时测定地下水中有机氯农药和多环芳烃[J]. 分析试验室, 2010, 29(2): 18−22. doi: 10.13595/j.cnki.issn1000-0720.2010.0038

    CrossRef Google Scholar

    Zhang L, Zhang Y T, Li G X, et al. Gas chromatography-mass spectrometric determination of organochlorinated pesticide and polycyclic aromatics in groundwater samples with standard correction method[J]. Chinese Journal of Analysis Laboratory, 2010, 29(2): 18−22. doi: 10.13595/j.cnki.issn1000-0720.2010.0038

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(7)

Article Metrics

Article views(64) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint