Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 4
Article Contents

REN Yu, TAN Jun, WANG Jihua, CAO Wengeng, WU Lin, LI Xiangzhi, LUO Silang. The Influence of Small Molecule Organic Acids on the Adsorption of Carbamazepine by Straw Biochar/Montmorillonite Complex and the Threshold Effect[J]. Rock and Mineral Analysis, 2025, 44(4): 628-644. doi: 10.15898/j.ykcs.202505160124
Citation: REN Yu, TAN Jun, WANG Jihua, CAO Wengeng, WU Lin, LI Xiangzhi, LUO Silang. The Influence of Small Molecule Organic Acids on the Adsorption of Carbamazepine by Straw Biochar/Montmorillonite Complex and the Threshold Effect[J]. Rock and Mineral Analysis, 2025, 44(4): 628-644. doi: 10.15898/j.ykcs.202505160124

The Influence of Small Molecule Organic Acids on the Adsorption of Carbamazepine by Straw Biochar/Montmorillonite Complex and the Threshold Effect

More Information
  • Crop straw biochar, as a green and efficient pollution remediation material, demonstrates significant environmental benefits and economic advantages in removing pharmaceutical active compounds (PhACs) from soil. Carbamazepine (CBZ), a persistent environmental risk pollutant within PhACs, represents a crucial target substance for removal from soil. However, the impact of low molecular weight organic acids (LMWOAs) produced by plant root exudates and organic matter degradation on the CBZ adsorption capacity of straw biochar remains poorly understood. This study investigates the adsorption capacity of biochar derived from corn, wheat, and rice straws on CBZ in montmorillonite through laboratory batch experiments and chromatographic analysis, as well as the influence of two LMWOAs (citric acid and oxalic acid) on the adsorption process. The results indicate that the adsorption capacity of montmorillonite for CBZ progressively increases with higher CBZ concentrations. Significant correlations between O/C, H/C, and (O+N)/C ratios with the adsorption affinity coefficient KF suggest that CBZ adsorption by straw biochar results from the combined effects of physical and chemical adsorption mechanisms, including pore filling, hydrophobic interactions, and π–π interactions. Notably, rice straw biochar exhibits the highest maximum adsorption capacity for CBZ at 115.6mg/g, significantly surpassing corn straw biochar (13.1mg/g) and wheat straw biochar (19.5mg/g), attributed to its stronger surface aromaticity and non-polarity. Although the addition of citric acid and oxalic acid reduces the adsorption coefficient (Kd) of CBZ on montmorillonite by 99%, it has minimal impact on the CBZ adsorption capacity of straw biochar. The threshold effect of LMWOAs in the montmorillonite-biochar composite system, characterized by “low concentration promotion and high concentration inhibition” in CBZ adsorption, indicates their influence on mineral-biochar interface interactions. These findings demonstrate that the incorporation of straw biochar into soil significantly enhances CBZ adsorption capacity, suggesting its potential as a soil remediation agent with robust resistance to environmental interference and promising application prospects. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202505160124.

  • 加载中
  • [1] Ban M J, Lee D H, Lee B T, et al. Assessing the environmental determinants of micropollutant contamination in streams using explainable machine learning and network analysis[J]. Chemosphere, 2025, 370: 144041. doi: 10.1016/j.chemosphere.2024.144041

    CrossRef Google Scholar

    [2] Wilkinson J L, Boxall A B A, Kolpin D W, et al. Pharmaceutical pollution of the world’s rivers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): 1−10. doi: 10.1073/pnas.2113947119

    CrossRef Google Scholar

    [3] Bunting S Y, Lapworth D J, Crane E J, et al. Emerging organic compounds in European groundwater[J]. Environmental Pollution, 2021, 269: 115945. doi: 10.1016/j.envpol.2020.115945

    CrossRef Google Scholar

    [4] Tapia I V, Martínez T S, Castro M A, et al. Occurrence of emerging organic contaminants and endocrine disruptors in different water compartments in Mexico—A review[J]. Chemosphere, 2022, 308(1): 136285. doi: 10.1016/j.Chemosphere.2022.136285

    CrossRef Google Scholar

    [5] K’oreje K O, Okoth M, van Langenhove H, et al. Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: Literature review and a look ahead(Review)[J]. Journal of Environmental Management, 2020, 254: 109752. doi: 10.1016/j.jenvman.2019.109752

    CrossRef Google Scholar

    [6] Muambo K E, Kim M G, Kim D H, et al. Pharmaceuticals in raw and treated water from drinking water treatment plants nationwide: Insights into their sources and exposure risk assessment[J]. Water Research X, 2024, 24: 100256. doi: 10.1016/j.wroa.2024.100256

    CrossRef Google Scholar

    [7] 梁贝竹, 陈建耀, 杨再智, 等. 华南滨海小流域地下水中PPCPs的分布、来源及影响因素[J]. 生态环境学报, 2024, 33(2): 249−260. doi: 10.16258/j.cnki.1674-5906.2024.02.009

    CrossRef Google Scholar

    Liang B Z, Chen J Y, Yang Z Z, et al. Spatial pattern and sources of PPCPs in groundwater and relevant influencing factors in a coastal watershed in South China: A case study in Tangjiawan Town of Zhuhai, Guangdong Province[J]. Ecology and Environmental Sciences, 2024, 33(2): 249−260. doi: 10.16258/j.cnki.1674-5906.2024.02.009

    CrossRef Google Scholar

    [8] Trognon J, Albasi C, Choubert J M. A critical review on the pathways of carbamazepine transformation products in oxidative wastewater treatment processes[J]. Science of the Total Environment, 2024, 912: 169040. doi: 10.1016/j.scitotenv.2023.169040

    CrossRef Google Scholar

    [9] Lu Z Y, Liu C Y, Hu Y Y, et al. Unmasking spatial heterogeneity in phytotoxicology mechanisms induced by carbamazepine by mass spectrometry imaging and multiomics analyses[J]. Environmental Science & Technology, 2024, 58(31): 13986−13994. doi: 10.1021/acs.est.4c04628

    CrossRef Google Scholar

    [10] Liu Q Z, Wang L, Xu X, et al. Antiepileptic drugs in aquatic environments: Occurrence, toxicity, transformation mechanisms and fate[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(23): 2030−2054. doi: 10.1080/10643389.2023.2209010

    CrossRef Google Scholar

    [11] 阎晓静, 王金花, 朱鲁生, 等. 卡马西平对小球藻生长的影响和氧化损伤[J]. 农业环境科学学报, 2017, 36(4): 643−650. doi: 10.11654/jaes.2016-1259

    CrossRef Google Scholar

    Yan X J, Wang J H, Zhu L S, et al. Effects of carbamazepine on the growth and the oxidative damage of Chlorella[J]. Journal of Agro-Environment Science, 2017, 36(4): 643−650. doi: 10.11654/jaes.2016-1259

    CrossRef Google Scholar

    [12] Schapira M, Manor O, Golan N, et al. Involuntary human exposure to carbamazepine: A cross-sectional study of correlates across the lifespan and dietary spectrum[J]. Environment International, 2020, 143: 105951. doi: 10.1016/j.envint.2020.105951

    CrossRef Google Scholar

    [13] 曹文庚, 王妍妍, 张亚南, 等. 含微塑料地下水的污染现状、环境风险及其发展趋势[J]. 中国地质, 2024, 51(6): 1895−1916. doi: 10.12029/gc20231028001

    CrossRef Google Scholar

    Cao W G, Wang Y Y, Zhang Y N, et al. Pollution status, environmental risk and development trend of groundwater containing microplastics[J]. Geology in China, 2024, 51(6): 1895−1916. doi: 10.12029/gc20231028001

    CrossRef Google Scholar

    [14] 任宇, 曹文庚, 肖舜禹, 等. 重金属在土壤中的分布、危害与治理技术研究进展[J]. 中国地质, 2024, 51(1): 118−142. doi: 10.12029/gc20230320001

    CrossRef Google Scholar

    Ren Y, Cao W G, Xiao S Y, et al. Research progress on distribution, harm and control technology of heavy metals in soil[J]. Geology in China, 2024, 51(1): 118−142. doi: 10.12029/gc20230320001

    CrossRef Google Scholar

    [15] 杨梦楠, 孙晗, 曹海龙, 等. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155

    CrossRef Google Scholar

    Yang M N, Sun H, Cao H L, et al. Preparation and application of biochar-chitosan magnetic composite adsorbent for removal of lead and copper from groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155

    CrossRef Google Scholar

    [16] Liu S W, Cen B T, Yu Z N, et al. The key role of biochar in amending acidic soil: Reducing soil acidity and improving soil acid buffering capacity[J]. Biochar, 2025, 7(1): 1−20. doi: 10.1007/s42773-025-00432-8

    CrossRef Google Scholar

    [17] 周松, 杨健豪, 晏士玮, 等. 根际有机酸对土壤中重金属化学行为和生物有效性的影响研究进展[J]. 生物学杂志, 2022, 39(3): 103−106, 124. doi: 10.3969/j.issn.2095-1736.2022.03.103

    CrossRef Google Scholar

    Zhou S, Yang J H, Yan S W, et al. Research progress on the effects of rhizosphere organic acids on the chemical behavior and bioavailability of heavy metals in soil[J]. Journal of Biology, 2022, 39(3): 103−106, 124. doi: 10.3969/j.issn.2095-1736.2022.03.103

    CrossRef Google Scholar

    [18] Jia M Y, Wang F, Bian Y R, et al. Sorption of sulfamethazine to biochars as affected by dissolved organic matters of different origin[J]. Bioresource Technology, 2018, 248: 36−43. doi: 10.1016/j.biortech.2017.08.082

    CrossRef Google Scholar

    [19] Zhou X, Zhong Y, He L, et al. Surface modification of wood activated carbon by CVD of NH3 to improve its micropore volume and adsorption to carbamazepine[J]. International Journal of Nanomedicine, 2025, 20: 3251−3267. doi: 10.2147/IJN.S495746

    CrossRef Google Scholar

    [20] Aylin A, Ramin A , Ajay K D, et al. Effective adsorption of carbamazepine from water by adsorbents developed from flax shives and oat hulls: Key factors and characterization[J]. Industrial Crops and Products, 2021, 170: 113721. doi: 10.1016/j.indcrop.2021.113721

    CrossRef Google Scholar

    [21] Bakkaloglu S, Ersan M, Karanfil T, et al. Effect of superfine pulverization of powdered activated carbon on adsorption of carbamazepine in natural source waters[J]. Science of the Total Environment, 2021, 793: 148473. doi: 10.1016/j.scitotenv.2021.148473

    CrossRef Google Scholar

    [22] Baghdadi M, Ghaffari E, Aminzadeh B. Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: Adsorption and sedimentation kinetic studies[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3309−3321. doi: 10.1016/j.jece.2016.06.034

    CrossRef Google Scholar

    [23] Xue Y T, Guo Y T, Zhang X, et al. Efficient adsorptive removal of ciprofloxacin and carbamazepine using modified pinewood biochar—A kinetic, mechanistic study[J]. Chemical Engineering Journal, 2022, 450: 137896. doi: 10.1016/j.cej.2022.137896

    CrossRef Google Scholar

    [24] Chu G, Zhao J, Liu Y, et al. The relative importance of different carbon structures in biochars to carbamazepine and bisphenol A sorption[J]. Journal of Hazardous Materials, 2019, 373: 106−114. doi: 10.1016/j.jhazmat.2019.03.078

    CrossRef Google Scholar

    [25] He Q, Liang J J, Chen L X, et al. Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: Molecular simulation, adsorption properties, and mechanisms[J]. Water Research, 2020, 168: 115164. doi: 10.1016/j.watres.2019.115164

    CrossRef Google Scholar

    [26] Zhong H, Zhu G J, Wang Z Z, et al. Efficient adsorption removal of carbamazepine from water by dual-activator modified hydrochar[J]. Separation and Purification Technology, 2025, 353(Part B): 128287. doi: 10.1016/j.seppur.2024.128287

    CrossRef Google Scholar

    [27] 刘忠珍. 丁草胺与土壤及土壤组分作用机理的研究[D]. 杭州: 浙江大学, 2007.

    Google Scholar

    Liu Z Z. The mechanism of butachlor adsorption on soils and soil components[D]. Hangzhou: Zhejiang University, 2007.

    Google Scholar

    [28] 薛英文, 赵曼妤, 胡张怡. 蒙脱土吸附去除盐酸四环素(TCH)实验研究[J]. 中国农村水利水电, 2024(2): 147−152, 159. doi: 10.12396/znsd.231178

    CrossRef Google Scholar

    Xue Y W, Zhao M Y, Hu Z Y. Research on the removal of tetracycline hydrochloride (TCH) by adsorption on montmorillonite[J]. China Rural Water and Hydropower, 2024(2): 147−152, 159. doi: 10.12396/znsd.231178

    CrossRef Google Scholar

    [29] 吴林. 蒙脱土和高岭土对吉非罗齐的吸附特征及影响因素研究[D]. 北京: 中国地质大学(北京), 2015.

    Google Scholar

    Wu L. Study on the sorption of gemfibrozil to montmorillonite and kaolinite and its influencing factors[D]. Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

    [30] Yu Y W, Chen D Z, Xie S S, et al. Adsorption behavior of carbamazepine on Zn-MOFs derived nanoporous carbons: Defect enhancement, role of N doping and adsorption mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107660. doi: 10.1016/j.jece.2022.107660

    CrossRef Google Scholar

    [31] 张威 张书缘, 孔祥科, 等. 磺胺甲恶唑和卡马西平在孔隙介质中的吸附行为与影响因素研究[J/OL]. 岩矿测试(2024-10-21) [2025-08-04]. https://doi.org/10.15898/j.ykcs.202407110154.

    Google Scholar

    Zhang W, Zhang S Y, Kong X K, et al. Adsorption behavior and influencing factors of sulfamethoxazole and carbamazepine on porous media [J/OL]. Rock and Mineral Analysis (2024-10-21) [2025-08-04]. https://doi.org/10.15898/j.ykcs.202407110154.

    Google Scholar

    [32] Nezhadali A, Koushali S E, Divsar F. Synthesis of polypyrrole-chitosan magnetic nanocomposite for the removal of carbamazepine from wastewater: Adsorption isotherm and kinetic study[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105648. doi: 10.1016/j.jece.2021.105648

    CrossRef Google Scholar

    [33] Ashiq A, Sarkar B, Adassooriya N, et al. Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media[J]. Chemosphere, 2019, 236: 124384. doi: 10.1016/j.chemosphere.2019.124384

    CrossRef Google Scholar

    [34] Zhang H Y, Li Q Y, Zhang X, et al. Insight into the mechanism of low molecular weight organic acids-mediated release of phosphorus and potassium from biochars[J]. Science of the Total Environment, 2020, 742: 140416. doi: 10.1016/j.scitotenv.2020.140416

    CrossRef Google Scholar

    [35] Rayanne M A V, Marlon L M, Luciano C B L, et al. Carbamazepine adsorption with a series of organoclays: Removal and toxicity analyses[J]. Applied Water Science, 2024, 14(6): 133. doi: 10.1007/s13201-024-02198-z

    CrossRef Google Scholar

    [36] 石林. 土壤矿物对小分子有机酸的吸附保护机制[D]. 昆明: 昆明理工大学, 2021.

    Google Scholar

    Shi L. Mechanisms of soil mineral adsorption and protection on low molecular weight organic acids [D]. Kunming: Kunming University of Science and Technology, 2021.

    Google Scholar

    [37] Sun B B, Lian F, Bao Q L, et al. Impact of low molecular weight organic acids (LMWOAs) on biochar micropores and sorption properties for sulfamethoxazole[J]. Environmental Pollution, 2016, 214(16): 142−148. doi: 10.1016/j.envpol.2016.04.017

    CrossRef Google Scholar

    [38] Liu X L, Ji R, Shi Y, et al. Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids: Implications for bioavailability and risks of airborne aromatics[J]. Science of the Total Environment, 2019, 655: 1159−1168. doi: 10.1016/j.scitotenv.2018.11.294

    CrossRef Google Scholar

    [39] Jiang Y F, Wu J L, Liu Z W, et al. Unveiling the impact of low-molecular-weight organic acids on enrofloxacin sorption in North China agricultural soil: Insights and implications[J]. Journal of Environmental Management, 2024, 370: 123060. doi: 10.1016/j.jenvman.2024.123060

    CrossRef Google Scholar

    [40] Xu Z B, Xu X Y, Yao C B, et al. Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2019, 378: 120705. doi: 10.1016/j.jhazmat.2019.05.098

    CrossRef Google Scholar

    [41] Alozie N, Heaney N, Lin C X. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids[J]. Science of the Total Environment, 2018, 630(1): 1188−1194. doi: 10.1016/j.scitotenv.2018.02.319

    CrossRef Google Scholar

    [42] Huang Q X, Chen W Z, Gao J Y, et al. Impact of low molecular weight organic acids on heavy metal(loid) desorption in biochar-amended paddy soil[J]. Environmental Geochemistry and Health, 2024, 46(8): 289. doi: 10.1007/s10653-024-02064-6

    CrossRef Google Scholar

    [43] 彭章, 龚香宜, 熊武芳, 等. 有机酸对芘在土壤中的吸附影响研究[J]. 农业环境科学学报, 2020, 39(7): 1540−1547. doi: 10.11654/jaes.2020-0217

    CrossRef Google Scholar

    Peng Z, Gong X Y, Xiong W F, et al. Effects of organic acids on the adsorption of pyrene in soil[J]. Journal of Agro-Environment Science, 2020, 39(7): 1540−1547. doi: 10.11654/jaes.2020-0217

    CrossRef Google Scholar

    [44] Szabó L, Vancsik A, Bauer L, et al. Effects of root-derived organic acids on sorption of pharmaceutically active compounds in sandy topsoil[J]. Chemosphere, 2024, 355: 141759. doi: 10.1016/j.chemosphere.2024.141759

    CrossRef Google Scholar

    [45] Wang Y, Wang C X, Xiong J Y, et al. Effects of low molecular weight organic acids on aggregation behavior of biochar colloids at acid and neutral conditions[J]. Biochar, 2022, 4(1): 20. doi: 10.1007/s42773-022-00142-5

    CrossRef Google Scholar

    [46] 周丹丹, 梁妮, 李浩, 等. 小分子有机酸对生物炭吸附Cu(Ⅱ)的影响[J]. 农业环境科学学报, 2016, 35(10): 1923−1930. doi: 10.11654/jaes.2016-0376

    CrossRef Google Scholar

    Zhou D D, Liang N, Li H, et al. Effect of low molecular weight organic acids on Cu(Ⅱ) adsorption by biochars[J]. Journal of Agro-Environment Science, 2016, 35(10): 1923−1930. doi: 10.11654/jaes.2016-0376

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(3) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint