| Citation: | ZHANG Wei, ZHANG Shuyuan, KONG Xiangke, XU Ruifeng, HAN Mei, LIU Shenghua, ZENG Shaojian, WU Lin. Adsorption Behavior and Influencing Factors of Sulfamethoxazole and Carbamazepine on Porous Media[J]. Rock and Mineral Analysis, 2025, 44(4): 645-657. doi: 10.15898/j.ykcs.202407110154 |
Sulfamethoxazole (SMX) and carbamazepine (CBZ) are pharmaceutically active compounds that are frequently detected in aquatic environments. Once they enter the water-soil system, these compounds pose potential risks to the ecological environment and human health. To investigate the adsorption behavior of SMX and CBZ by different soils, the adsorption kinetics, isothermal adsorption characteristics of SMX and CBZ in two typical porous media (silt and fine sand), and the influences of solution pH value, dissolved humic acid (DHA), and soil mineral components were examined. The results show that the adsorption of SMX and CBZ on porous media conformed to both the Lagergren pseudo-second-order kinetic model and the Langmuir isothermal adsorption model, which were characterized by an initial rapid adsorption followed by slow equilibrium. The adsorption process belongs to the monolayer adsorption and is controlled by chemical reaction. The adsorption of SMX by porous media is a spontaneous and exothermic process, while the adsorption of CBZ is an endothermic reaction. Under experimental conditions, the maximum adsorption capacities of silty soil with small particle size, high organic matter content and large specific surface area for SMX and CBZ were 3.0 times and 2.3 times larger than those of fine sand, respectively. The adsorption of SMX was mainly influenced by the electrostatic attraction on mineral surfaces and the partitioning effect of organic matter, while the adsorption of CBZ was dominated by the partitioning effect. With the increase of solution pH value (from 5.0 to 9.0), the adsorption capacity of anionic SMX decreased significantly due to the influence of electrostatic repulsion, while the adsorption capacity of molecular CBZ changed insignificantly. The coexistence of dissolved humic acid (8–50mg/L) in the solution had a competitive inhibitory effect on the adsorption of SMX and CBZ by porous media, while montmorillonite and iron oxides in the porous media had a promoting effect on the adsorption of SMX and CBZ. The BRIEF REPORT is available for this paper at
| [1] | Wang H, Xi H, Xu L L, et al. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal careproducts in the water environment: A review[J]. Science of the Total Environment, 2021, 788: 147819. doi: 10.1016/j.scitotenv.2021.147819 |
| [2] | 吴林, 李峰, 杜蓓蓓. 药物及个人护理品在土壤中的淋溶迁移性评价[J]. 环境科学与技术, 2015, 38(5): 163−167. doi: 10.3969/j.issn.1003-6504.2015.05.032 Wu L, Li F, Du B B. Evaluation of leachability of pharmaceuticals and personal care products in soils[J]. Environmental Science & Technology, 2015, 38(5): 163−167. doi: 10.3969/j.issn.1003-6504.2015.05.032 |
| [3] | Li H, Cai Y, Gu Z, et al. Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater[J]. Chemosphere, 2020, 248: 126014. doi: 10.1016/j.chemosphere.2020.126014 |
| [4] | Zhang Y N, Zhang T T, Liu H Y, et al. Simulated sunlight-induced inactivation of tetracycline resistant bacteria and effects of dissolved organic matter[J]. Water Research, 2020, 185: 116241. doi: 10.1016/j.watres.2020.116241 |
| [5] | 郭子宁, 王旭升, 向师正, 等. 再生水入渗区典型抗生素分布特征与地下水微生物群落影响因素研究[J]. 岩矿测试, 2022, 41(3): 451−462. doi: 10.15898/j.cnki.11-2131/td.202111040163 Guo Z N, Wang X S, Xiang S Z, et al. Distribution characteristics of typical antibiotics in reclaimed water infiltration area and influencing factors of groundwater microbial community[J]. Rock and Mineral Analysis, 2022, 41(3): 451−462. doi: 10.15898/j.cnki.11-2131/td.202111040163 |
| [6] | Kovačević S, Radišić M, Laušević M, et al. Occurrence and behavior of selected pharmaceuticals during riverbank filtration in the Republic of Serbia[J]. Environmental Science and Pollution Research, 2017, 24(2): 2075−2088. doi: 10.1007/s11356-016-7959-4 |
| [7] | Cao S S, Duan Y P, Tu Y J, et al. Pharmaceuticals and personal care products in a drinking water resource of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone China: Occurrence and human health risk assessment[J]. Science of the Total Environment, 2020, 721: 137624. doi: 10.1016/j.scitotenv.2020.137624 |
| [8] | 牛颖, 安圣, 陈凯, 等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39−58. doi: 10.15898/j.cnki.11-2131/td.202210120192 Niu Y, An S, Chen K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39−58. doi: 10.15898/j.cnki.11-2131/td.202210120192 |
| [9] | Adeleye A S, Xue J, Zhao Y X, et al. Abundance, fate, and effects of pharmaceuticals and care products in aquatic personal environments[J]. Journal of Hazardous Materials, 2022, 424(Part B):127284. |
| [10] | Yuan Q L, Li Z P, Li L C, et al. Pharmaceuticals and personal care products transference-transformation in aquifer system[J]. Journal of Groundwater Science and Engineering, 2020, 8(4): 358−365. doi: 10.19637/j.cnki.2305-7068.2020.04.007 |
| [11] | 巢铸, 夏鹏, 司静宜, 等. 我国淡水中卡马西平的水质基准初探及生态风险评估[J/OL]. 环境工程(2023-01-19).https://kns.cnki.net/kcms/detail//11.2097.x.20230117.1619.006.html. Chao Z, Xia P, Si J Y, et al. Preliminary study on water quality criteria and ecological risk assessment of carbamazepine in freshwater in China[J/OL]. Environ-mental Engineering (2023-01-19).https://kns.cnki.net/kcms/detail//11.2097.x.20230117.1619.006.html. |
| [12] | 马琳, 李广贺. 地下水中新型污染物的赋存与分布特征[C]//昆明: 中国环境科学学会学术年会论文集, 2013: 3701−3705. Ma L, Li G H. Occurrence and distribution characteristics of new pollutants in groundwater[C]//Kunming: Proceedings of the Annual Conference of the Chinese Society of Environmental Sciences, 2013: 3701−3705. |
| [13] | Wang J L, Zhang C, Xiong L, et al. Changes of antibiotic occurrence and hydrochemistry in groundwater under the influence of the south-to-north water diversion (the Hutuo River, China)[J]. Science of the Total Environment, 2022, 832: 154779. doi: 10.2139/ssrn.3997719 |
| [14] | 李烨. 抗生素电离形态对其植物吸收的影响[D]. 大连: 大连理工大学, 2020. Li Y. Effect of ionization speciation on the plant uptake of antibiotics[D]. Dalian: Dalian University of Technology, 2020. |
| [15] | Cai N, Larese-Casanova P. Application of positively-charged ethylenediamine-functionalized graphene for the sorption of anionic organic contaminants from water[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2941−2951. doi: 10.1016/j.jece.2016.06.004 |
| [16] | Kodešová R, Grabic R, Kočárek M, et al. Pharmaceuticals’ sorptions relative to properties of thirteen different soils[J]. Science of the Total Environment, 2015, 511: 435−443. doi: 10.1016/j.scitotenv.2014.12.088 |
| [17] | D’alessio M, Durso L M, Miller D N, et al. Environmental fate and microbial effects of monensin, lincomycin, and sulfamethazine residues in soil[J]. Environmental Pollution, 2019, 246: 60−68. doi: 10.1016/j.envpol.2018.11.093 |
| [18] | Cuprys A, Pulicharla R, Lecka J, et al. Ciprofloxacin-metal complexes-stability and toxicity tests in the presence of humic substances[J]. Chemosphere, 2018, 202: 549−559. doi: 10.1016/j.chemosphere.2018.03.117 |
| [19] | 王东升, 李鑫. 不同质地土壤中四环素类抗生素的吸附解吸特性研究[J]. 安全与环境学报, 2017, 17(1): 227−231. doi: 10.13637/j.issn.1009-6094.2017.01.044 Wang D S, Li X. Adsorption and desorption features of tetracycline antibiotics in different texture soils[J]. Journal of Safety and Environment, 2017, 17(1): 227−231. doi: 10.13637/j.issn.1009-6094.2017.01.044 |
| [20] | 梁雨, 何江涛, 张思. DOM不同相对分子质量组分在无机矿物上的吸附及其对卡马西平吸附的影响实验[J]. 环境科学, 2018, 39(5): 2219−2229. doi: 10.13227/j.hjkx.201708012 Liang Y, He J T, Zhang S. Adsorption of dissolved organic matter with different relative molecular masses on inorganic minerals and its influence on carbamazepine adsorption behavior[J]. Environmental Science, 2018, 39(5): 2219−2229. doi: 10.13227/j.hjkx.201708012 |
| [21] | 孔晨晨, 张世文, 聂超甲, 等. 农用地土壤抗生素组成特征与积累规律[J]. 环境科学, 2019, 40(4): 1981−1989. doi: 10.13227/j.hjkx.201809018 Kong C, Zhang S W, Nie C J, et al. Composition, characteristics, and accumulation of antibiotics in the soil in agricultural land[J]. Environmental Science, 2019, 40(4): 1981−1989. doi: 10.13227/j.hjkx.201809018 |
| [22] | 曹文庚, 王妍妍, 张亚南, 等. 含微塑料地下水的污染现状、环境风险及其发展趋势[J/OL]. 中国地质(2024-01-30).https://link.cnki.net/urlid/11.1167.P.20240130.1025.004. Cao W G, Wang Y Y, Zhang Y N, et al. Pollution status, environmental risk and development trend of groundwater containing microplastics[J/OL]. Geology in China (2024-01-30).https://link.cnki.net/urlid/11.1167.P.20240130.1025.004 |
| [23] | Reguyal F, Sarmah A K. Adsorption of sulfame-thoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol[J]. Science of the Total Environment, 2018, 628/629: 722−730. doi: 10.1016/j.scitotenv.2018.01.323 |
| [24] | Martinez-Costa J I, Maldonado-Rubio M I, Leyva R R. Degradation of emerging contaminants diclofenac, sulfamethoxazole, trimethoprim and carbamazepine by bentonite and vermiculite at a pilot solar compound parabolic collector[J]. Catalysis Today, 2020, 341: 26−36. doi: 10.1016/j.cattod.2018.07.021 |
| [25] | 梁建军, 何芹, 郑怀礼, 等. 卡马西平印迹吸附剂的分子模拟与吸附机理[J]. 分析化学, 2019, 47(6): 846−854. doi: 10.19756/i.issn.0253-3820.191084 Liang J J, He Q, Zheng H L, et al. Molecular simulation and adsorption mechanism of carbamazepine imprinted adsorbent[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6): 846−854. doi: 10.19756/i.issn.0253-3820.191084 |
| [26] | 张文文. 碳基材料对典型 PPCPs在水环境中的吸附行为研究[D]. 北京: 北京建筑大学, 2017. Zhang W W. Study on the sorption behavior of typical ppcps to carbonaceous materials[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017. |
| [27] | 张威, 孔祥科, 韩占涛, 等. 7-ACA发酵药渣生物炭对水体中Pb(Ⅱ)和Cd(Ⅱ)的吸附特性[J]. 安全与环境工程, 2022, 29(4): 1−9. doi: 10.13578/j.cnki.issn.1671-1556.20210694 Zhang W, Kong X K, Han Z T, et al. Adsorption characteristics of Pb(Ⅱ) and Cd(Ⅱ) in water bodies onto biochars derived from 7-ACA fermented residue[J]. Safety and Environmental Engineering, 2022, 29(4): 1−9. doi: 10.13578/j.cnki.issn.1671-1556.20210694 |
| [28] | Wang P, Kong X K, Ma L S, et al. Metal(loid)s removal by zeolite-supported iron particles from mine contaminated groundwater: Performance and mechanistic insights[J]. Environmental Pollution, 2022, 313: 120155. doi: 10.1016/j.envpol.2022.120155 |
| [29] | Shi G W, Li Y S, Liu Y C, et al. Predicting the speciation of ionizable antibiotic ciprofloxacin by biochars with varying carbonization degrees[J]. RSC Advances, 2023, 13: 9892−9902. doi: 10.1039/d3ra00122a |
| [30] | Manjunath S V, Singh B R, Kumar M. Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems[J]. Chemical Engineering Journal, 2020, 381: 122713. doi: 10.1016/j.cej.2019.122713 |
| [31] | Rajapaksha A, Ok Y, Vithanage M, et al. Steam Activation of Biochars Facilitates Kinetics and pH-Resilience of Sulfamethazine Sorption[J]. Journal of Soils and Sediments, 2016, 16(3): 889−895. doi: 10.1007/s11368-015-1325-x |
| [32] | 时雯雯, 魏兴, 周金龙, 等. 新疆不同质地土壤对石油类污染物的吸附作用[J]. 环境工程, 2022, 40(4): 127−133. doi: 10.13205/j.hjgc.202204018 Shi W W, Wei X, Zhou J L, et al. Adsorption of petroleum pollutants on different texture soils in Xinjiang China[J]. Environmental Engineering, 2022, 40(4): 127−133. doi: 10.13205/j.hjgc.202204018 |
| [33] | 汤家喜, 向彪, 李玉, 等. 硅藻土对水中氟化物的吸附特性研究[J]. 生态环境学报, 2022, 31(2): 335−343. doi: 10.16258/j.cnki.1674-5906.2022.02.014 Tang J X, Xiang B, Li Y, et al. Study on adsorption characteristics of fluoride in water by diatomite[J]. Ecology and Environmental Sciences, 2022, 31(2): 335−343. doi: 10.16258/j.cnki.1674-5906.2022.02.014 |
| [34] | Jiang Y, Ma X L, Sun F Y, et al. A comparative study on the adsorption properties of heavy metal Cr in lake sediment and soil[J]. Applied Ecology and Environmental Research, 2021, 19(2): 901−914. doi: 10.15666/AEER/1902_901914 |
| [35] | 何红珠, 王欣怡, 卫潇, 等. 牡丹果荚基多孔碳材料对水中四环素的吸附[J]. 农业环境科学学报, 2024, 43(6): 1389−1399. doi: 10.11654/jaes.2023-1106 He H Z, Wang X Y, Wei X, et al. Adsorption of tetracycline in water by peony pod–based porous carbon material[J]. Journal of Agro-Environment Science, 2024, 43(6): 1389−1399. doi: 10.11654/jaes.2023-1106 |
| [36] | 钱子妍, 曾娟, 张立刚, 等. 南海深海沉积物对Cu(Ⅱ)的吸附特性研究[J]. 环境科学学报, 2023, 43(9): 152−163. doi: 10.13671/j.hjkxxb.2023.0006 Qian Z Y, Zeng J, Zhang L G, et al. Cu(Ⅱ) adsorption characteristics by deep-sea sediment from the South China Sea[J]. Acta Scientiae Circumstantiae, 2023, 43(9): 152−163. doi: 10.13671/j.hjkxxb.2023.0006 |
| [37] | Chauhan M, Saini V K, Suthar S, et al. Removal of pharmaceuticals and personal care products (PPCPs) from water by adsorption on aluminum pillared clay[J]. Journal of Porous Materials, 2020, 27: 383−393. doi: 10.1007/s10934-019-00817-8 |
| [38] | 俞伟, 赵思钰, 王宇航, 等. 苜蓿生物炭对磺胺甲恶唑的吸附机理研究[J]. 西北大学学报(自然科学版), 2022, 52(1): 116−127. doi: 10.16152/j.cnki.xdxbzr.2022-01-014 Yu W, Zhao S Y, Wang Y H, et al. Mechanism of adsorption of sulfamethoxazole by alfalfa biochar at different pyrolysis temperatures[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(1): 116−127. doi: 10.16152/j.cnki.xdxbzr.2022-01-014 |
| [39] | 李仁杰. 有机质和团聚物对PPCPs在土壤中吸附和迁移的影响[D]. 北京: 中国科学院大学, 2020. Li R J. Effects of organic matter and aggregate on adsorption and transport of PPCPs in soil[D]. Beijing: University of Chinese Academy of Sciences, 2020. |
| [40] | Wu Q L, Xian Y, He Z L, et al. Adsorption characteristics of Pb(Ⅱ) using biochar derived from spent mushroom substrate[J]. Scientific Reports, 2019, 9: 15999. doi: 10.1038/s41598-019-52554-2 |
| [41] | 南志江, 蒋煜峰, 毛欢欢, 等. 玉米秸秆生物炭对灰钙土吸附金霉素的影响[J]. 环境科学, 2021, 42(12): 5896−5904. doi: 10.13227/j.hjkx.202103284 Nan Z J, Jiang Y F, Mao H H, et al. Effect of corn stalk biochar on the adsorption of aureomycin from sierozem[J]. Environmental Science, 2021, 42(12): 5896−5904. doi: 10.13227/j.hjkx.202103284 |
| [42] | 李志琳, 解宇峰, 程德义, 等. 氨化改性小麦秸秆对水体Cd2+的吸附性能研究[J]. 环境工程技术学报, 2019, 9(5): 566−572. doi: 10.12153/j.issn.1674-991X.2019.04.010 Li Z L, Xie Y F, Cheng D Y, et al. Adsorption properties of ammonia-modified wheat straw on aquatic cadmium[J]. Journal of Environmental Engineering Technology, 2019, 9(5): 566−572. doi: 10.12153/j.issn.1674-991X.2019.04.010 |
| [43] | Rizzuto S, Baho D L, Jones K C, et al. Binding of waterborne pharmaceutical and personal care products to natural dissolved organic matter[J]. Science of the Total Environment, 2021, 784(36): 147208. doi: 10.1016/j.scitotenv.2021.147208 |
| [44] | 汪玉瑛, 尤凌聪, 刘玉学, 等. 蒙脱石对恩诺沙星吸附性能研究[J]. 安全与环境学报, 2019, 19(4): 1349−1358. doi: 10.13637/j.issn.1009-6094.2019.04.034 Wang Y Y, You L C, Liu Y X, et al. Investigation of adsorptive properties of enrofloxacin by using montmorillonite[J]. Journal of Safety and Environment, 2019, 19(4): 1349−1358. doi: 10.13637/j.issn.1009-6094.2019.04.034 |
| [45] | Zhi D, Yang D, Zheng Y, et al. Current progress in the adsorption, transport and biodegradation of antibiotics in soil[J]. Journal of Environmental Management, 2019, 251: 109598. doi: 10.1016/j.jenvman.2019.109598 |
Adsorption and pseudo-second-order kinetics fitting curves of SMX and CBZ by different porous media. (a) SMX adsorption; (b) SMX adsorption fitting curves; (c) CBZ adsorption; (d) CBZ adsorption fitting curves.
Isothermal adsorption fitting curves of (a) SMX and (b) CBZ by different porous media
Effect of pH on the (a) SMX and (b) CBZ adsorption by porous media
Effect of DHA concentration on the (a) SMX and (b) CBZ adsorption by porous media
Infrared adsorption spectra of (a) SMX and (b) CBZ by silt before and after adding DHA
Comparison of adsorption capacity of (a) SMX and (b) CBZ by montmorillonite and iron oxide