Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 4
Article Contents

LIU Xuesong, ZHANG Tao, TAO Yanqiu, LYU Yonggao. A Review of Research Progress on Detection and Screening Techniques for Perfluoroalkyl and Polyfluoroalkyl Substances[J]. Rock and Mineral Analysis, 2025, 44(4): 546-561. doi: 10.15898/j.ykcs.202408120172
Citation: LIU Xuesong, ZHANG Tao, TAO Yanqiu, LYU Yonggao. A Review of Research Progress on Detection and Screening Techniques for Perfluoroalkyl and Polyfluoroalkyl Substances[J]. Rock and Mineral Analysis, 2025, 44(4): 546-561. doi: 10.15898/j.ykcs.202408120172

A Review of Research Progress on Detection and Screening Techniques for Perfluoroalkyl and Polyfluoroalkyl Substances

  • Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals with widespread industrial and commercial applications, ubiquitous in surface water, groundwater, soil, and sediments. PFAS have garnered significant global attention due to their toxicity and bioaccumulative properties, making their precise identification and quantification crucial for pollution prevention and control efforts. This review provides an overview of the latest research advancements in pretreatment steps, detection techniques, and screening methods for PFAS in the environment. It emphasizes the strengths, weaknesses, and applicable conditions of solvent extraction and solid-phase extraction methods for PFAS, and delves into high-efficiency enrichment pretreatment techniques. Chromatography-mass spectrometry, particularly high performance liquid chromatography-mass spectrometry (HPLC-MS) and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS), represent the mainstream detection technology for PFAS analysis, with future developments pointing towards even lower detection limits, now reaching as low as 0.01ng/L. The review summarizes the published quantitative detection standards and their key characteristics from both domestic and international contexts, discusses the merits, demerits, and applicable scenarios of targeted and non-targeted screening, and highlights high-resolution mass spectrometry (HRMS) and total PFAS analysis as pivotal directions for future non-targeted screening. It recommends the development of rapid screening tools for total organic fluorine and pretreatment techniques tailored to different sample matrices, offering insights for accurate identification and rapid quantification of PFAS in diverse environmental settings. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202408120172.

  • 加载中
  • [1] Schymanski E L, Zhang J, Thiessen P A, et al. Per- and polyfluoroalkyl substances (PFAS) in PubChem: 7 million and growing[J]. Environmental Science & Technology, 2023, 57(44): 16918−16928. doi: 10.1021/acs.est.3c04855

    CrossRef Google Scholar

    [2] Xu B, Yang G, Lehmann A, et al. Effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on soil structure and function[J]. Soil Ecology Letters, 2023, 5(1): 108−117. doi: 10.1007/s42832-022-0143-5

    CrossRef Google Scholar

    [3] You L, Kou J, Wang M, et al. An exposome atlas of serum reveals the risk of chronic diseases in the Chinese population[J]. Nature Communications, 2024, 15(1): 2268. doi: 10.1038/s41467-024-46595-z

    CrossRef Google Scholar

    [4] Xia C J, Capozzi S L, Romanak K A, et al. The ins and outs of per- and polyfluoroalkyl substances in the great lakes: The role of atmospheric deposition[J]. Environmental Science & Technology, 2024, 58(21): 9303−9313. doi: 10.1021/acs.est.3c10098

    CrossRef Google Scholar

    [5] Wallace M A G, Smeltz M G, Mattila J M, et al. A review of sample collection and analytical methods for detecting per- and polyfluoroalkyl substances in indoor and outdoor air[J]. Chemosphere, 2024, 358: 142129. doi: 10.1016/j.chemosphere.2024.142129

    CrossRef Google Scholar

    [6] 于开宁, 王润忠, 刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    CrossRef Google Scholar

    Yu K N, Wang R Z, Liu D D. A review of rapid detections for emerging contaminants in ground-water[J]. Rock and Mineral Analysis, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    CrossRef Google Scholar

    [7] Zhu Q, Qian J, Huang S, et al. Occurrence, distribution, and input pathways of per- and polyfluoroalkyl substances in soils near different sources in Shanghai[J]. Environmental Pollution, 2022, 308: 119620. doi: 10.1016/j.envpol.2022.119620

    CrossRef Google Scholar

    [8] 金磊. 黄浦江上游太浦河水源水体中全氟化合物赋存特征及风险评价[J]. 净水技术, 2021, 40(1): 54−59. doi: 10.15890/j.cnki.jsjs.2021.01.010

    CrossRef Google Scholar

    Jin L. Risk assessment and occurrence characteristics of PFCs in water body of Taipu Water source in upstream of Huangpu river[J]. Water Purification Technology, 2021, 40(1): 54−59. doi: 10.15890/j.cnki.jsjs.2021.01.010

    CrossRef Google Scholar

    [9] Li Y N, Yao J Z, Zhang J, et al. First report on the bioaccumulation and trophic transfer of perfluoroalkyl ether carboxylic acids in estuarine food web[J]. Environmental Science & Technology, 2021, 56(10): 6046−6055. doi: 10.1021/acs.est.1c00965

    CrossRef Google Scholar

    [10] Lyu X Y, Xiao F, Shen C Y, et al. Per- and polyfluoroalkyl substances (PFAS) in subsurface environments: Occurrence, fate, transport, and research prospect[J]. Reviews of Geophysics, 2022, 60(3): e2021RG000765. doi: 10.1029/2021RG000765

    CrossRef Google Scholar

    [11] Andersson E M, Scott K, Xu Y, et al. High exposure to perfluorinated compounds in drinking water and thyroid disease. A cohort study from Ronneby, Sweden[J]. Environmental Research, 2019, 176: 108540. doi: 10.1016/j.envres.2019.108540

    CrossRef Google Scholar

    [12] Gonzalez-Barreiro C, Martinez-Carballo E, Sitka A, et al. Method optimization for determination of selected perfluorinated alkylated substances in water samples[J]. Analytical Bioanalytical Chemistry, 2006, 386(7): 2123−2132.

    Google Scholar

    [13] Wang J, Shi Y, Cai Y. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry[J]. Chromatography A, 2018, 1544: 1−7. doi: 10.1016/j.chroma.2018.02.047

    CrossRef Google Scholar

    [14] 陶慧, 黄理金, 欧阳磊, 等. 氨基化共价有机骨架固相微萃取涂层用于水体中酚类的高效萃取[J]. 岩矿测试, 2022, 41(6): 1040−1049. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206015

    CrossRef Google Scholar

    Tao H, Huang L J, Ouyang L, et al. An amino-functionlized covalent organic framework coating for highly efficient solid phase microextraction of trace phenols in water[J]. Rock and Mineral Analysis, 2022, 41(6): 1040−1049. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206015

    CrossRef Google Scholar

    [15] Yao Y, Zhao Y, Sun H, et al. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: Implications for human exposure[J]. Environmental Science & Technology, 2018, 52(5): 3156−3166. doi: 10.1021/acs.est.7b04971

    CrossRef Google Scholar

    [16] Padilla-Sanchez J A, Papadopoulou E, Poothong S, et al. Investigation of the best approach for assessing human exposure to poly-and perfluoroalkyl substances through indoor air[J]. Environmental Science & Technology, 2017, 51(21): 12836−12843. doi: 10.1021/acs.est.7b03516

    CrossRef Google Scholar

    [17] Lorenzo M, Campo J, Pico Y. Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems[J]. TRAC-Trends Analytical Chemistry, 2018, 103: 137−155. doi: 10.1016/j.trac.2018.04.003

    CrossRef Google Scholar

    [18] Saito K, Uemura E, Ishizaki A, et al. Determination of perfluorooctanoic acid and perfluorooctane sulfonate by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry[J]. Analytica Chimica Acta, 2010, 658(2): 141−146. doi: 10.1016/j.aca.2009.11.004

    CrossRef Google Scholar

    [19] Bach C, Boiteux V, Hemard J, et al. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry[J]. Chromatography A, 2016, 1448: 98−106. doi: 10.1016/j.chroma.2016.04.025

    CrossRef Google Scholar

    [20] Ruan T, Wang Y, Wang T, et al. Presence and partitioning behavior of polyfluorinated iodine alkanes in environmental matrices around a fluorochemical manufacturing plant: Another possible source for perfluorinated carboxylic acids[J]. Environmental Science & Technology, 2010, 44(15): 5755−5761. doi: 10.1021/es101507s

    CrossRef Google Scholar

    [21] Surma M, Wiczkowski W, Cieślik E, et al. Method development for the determination of PFOA and PFOS in honey based on the dispersive solid phase extraction (d-SPE) with micro-UHPLC-MS/MS system[J]. Microchemical Journal, 2015, 121: 150−156. doi: 10.1016/j.microc.2015.02.008

    CrossRef Google Scholar

    [22] Martin J, Rodriguez-Gomez R, Zafra-Gomez A, et al. Validated method for the determination of perfluorinated compounds in placental tissue samples based on a simple extraction procedure followed by ultra-high performance liquid chromatography-tandem mass spectrometry analysis[J]. Talanta, 2016, 150: 169−176. doi: 10.1016/j.talanta.2015.12.020

    CrossRef Google Scholar

    [23] Cao Y, Lee C, Davis E T, et al. 1000-Fold preconcentration of per- and polyfluorinated alkyl substances within 10 minutes via electrochemical aerosol formation[J]. Analytical Chemistry, 2019, 91(22): 14352−14358. doi: 10.1021/acs.analchem.9b02758

    CrossRef Google Scholar

    [24] Suwannakot P, Lisi F, Ahmed E, et al. Metal-organic framework-enhanced solid-phase microextraction mass spectrometry for the direct and rapid detection of perfluorooctanoic acid in environmental water samples[J]. Analytical Chemistry, 2020, 92(10): 6900−6908. doi: 10.1021/acs.analchem.9b05524

    CrossRef Google Scholar

    [25] Yang L, Jin F, Zhang P, et al. Simultaneous determination of perfluorinated compounds in edible oil by gel-permeation chromatography combined with dispersive solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Agricultural and Food Chemistry, 2015, 63(38): 8364−8671. doi: 10.1021/acs.jafc.5b03903

    CrossRef Google Scholar

    [26] Ayala-Cabrera J F, Contreras-Llin A, Moyano E, et al. A novel methodology for the determination of neutral perfluoroalkyl and polyfluoroalkyl substances in water by gas chromatography-atmospheric pressure photoionisation-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2020, 1100: 97−106. doi: 10.1016/j.aca.2019.12.004

    CrossRef Google Scholar

    [27] 王晓研, 沈伟健, 王红, 等. 气相色谱-负化学源-质谱法检测水中10 种全氟羧酸化合物[J]. 色谱, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019

    CrossRef Google Scholar

    Wang X Y, Shen W J, Wang H, et al. Determination of 10 perfluorinated carboxylic acid compounds in water by gas chromatography-mass spectrometry coupled with negative chemical ionization[J]. Chinese Journal of Chromatography, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019

    CrossRef Google Scholar

    [28] 李青倩, 李丽和, 王锦, 等. 新污染物的污染现状及其检测方法研究进展[J]. 应用化工, 2023, 52(7): 2202−2206. doi: 10.16581/j.cnki.issn1671-3206.20230710.003

    CrossRef Google Scholar

    Li Q Q, Li L H, Wang J, et al. Study on emerging pollutants pollution status and research progress of detection methods[J]. Applied Chemical Industry, 2023, 52(7): 2202−2206. doi: 10.16581/j.cnki.issn1671-3206.20230710.003

    CrossRef Google Scholar

    [29] Yao Y, Zhao Y, Sun H, et al. Target and non-target analyses of neutral per- and polyfluoroalkyl substances from fluorochemical industries using GC-MS/MS and GC-TOF: Insights on their environmental fate[J]. Environment International, 2023(182): 108311. doi: 10.1016/j.envint.2023.108311

    CrossRef Google Scholar

    [30] Shoeib M, Harner T, Lee S C, et al. Sorbent impregnated polyurethane foam disk for passive air sampling of volatile fluorinated chemicals[J]. Analytical Chemistry, 2008, 80(3): 675−682. doi: 10.1021/ac701830s

    CrossRef Google Scholar

    [31] Jia S, Santos M M D, Li C, et al. Recent advances in mass spectrometry analytical techniques for per- and polyfluoroalkyl substances (PFAS)[J]. Analytical and Bioanalytical Chemistry, 2022, 414(9): 2795−2807. doi: 10.1007/s00216-022-03905-y

    CrossRef Google Scholar

    [32] Ayala-Cabrera J F, Santos F J, Moyano E. Negative-ion atmospheric pressure ionisation of semi-volatile fluorinated compounds for ultra-high-performance liquid chromatography tandem mass spectrometry analysis[J]. Analytical Bioanalytical Chemistry, 2018, 410(20): 4913−4924. doi: 10.1007/s00216-018-1138-z

    CrossRef Google Scholar

    [33] 周五端, 梁杰, 卓杰, 等. 气相色谱-质谱联用仪法测定含氟橡胶中全氟辛酸的含量[J]. 化学工程师, 2020, 34(4): 28−30. doi: 10.16247/j.cnki.23-1171/tq.20200428

    CrossRef Google Scholar

    Zhou W D, Liang J, Zhuo J, et al. Determination of content of fluorine rubber content of PFOA by gas chromatography-mass spectrometry[J]. Chemical Engineer, 2020, 34(4): 28−30. doi: 10.16247/j.cnki.23-1171/tq.20200428

    CrossRef Google Scholar

    [34] 曾广丰, 谢建军, 王璐, 等. 气相色谱-四极杆/飞行时间质谱法快速测定化妆品中全氟和多氟化合物[J]. 质谱学报, 2024, 45(5): 682−690. doi: 10.7538/zpxb.2024.0025

    CrossRef Google Scholar

    Zeng G F, Xie J J, Wang L, et al. Rapid detection of per- and polyfluoroalkyl compounds in cosmetics using gas chromatography-quadrupole/time of flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2024, 45(5): 682−690. doi: 10.7538/zpxb.2024.0025

    CrossRef Google Scholar

    [35] Zhong M M, Wang T L, Qi C D, et al. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters[J]. Journal of Chromatography A, 2019, 1602: 350−358. doi: 10.1016/j.chroma.2019.06.012

    CrossRef Google Scholar

    [36] Borrull J, Colom A, Fabregas J, et al. A liquid chromatography tandem mass spectrometry method for determining 18 per- and polyfluoroalkyl substances in source and treated drinking water[J]. Journal of Chromatography A, 2020, 1629: 461485. doi: 10.1016/j.chroma.2020.461485

    CrossRef Google Scholar

    [37] Liang M, Xian Y P, Wang B, et al. High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from southern china by supramolecular solvents-based microextraction coupled with HPLC-orbitrap HRMS[J]. Environmental Pollution, 2020, 263: 114389. doi: 10.1016/j.envpol.2020.114389

    CrossRef Google Scholar

    [38] 杨愿愿, 李偲琳, 赵建亮, 等. 超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57 种全/多氟化合物[J]. 分析化学, 2022, 50(8): 1243−1251. doi: 10.19756/j.issn.0253-3820.210621

    CrossRef Google Scholar

    Yang Y Y, Li S L, Zhao J L, et al. Determination of 57 kinds of per- and polyfluoroalkyl substances in water, sediments and biological samples by ultra-high performance liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1243−1251. doi: 10.19756/j.issn.0253-3820.210621

    CrossRef Google Scholar

    [39] Liu S Q, Junaid M, Zhong W, et al. A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry[J]. Chemosphere, 2020, 251: 126327. doi: 10.1016/j.chemosphere.2020.126327

    CrossRef Google Scholar

    [40] 钱佳浩, 朱清禾, 万江, 等. 超高效液相色谱-串联质谱法测定土壤中18 种全氟和多氟烷基化合物[J]. 分析测试学报, 2022, 41(3): 319−326. doi: 10.19969/j.fxcsxb.21072602

    CrossRef Google Scholar

    Qian J H, Zhu Q H, Wan J, et al. Determination of 18 perfluorinated and polyfluoroalkyl compounds in soil by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2022, 41(3): 319−326. doi: 10.19969/j.fxcsxb.21072602

    CrossRef Google Scholar

    [41] 刘明睿, 汪伶俐, 陈亮. 超高效液相色谱串联质谱法快速测定地下水和含水层介质中16 种全氟烷基酸[J]. 地学前缘, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    CrossRef Google Scholar

    Liu M R, Wang L L, Chen L. Quick analysis of sixteen PFAAs in groundwater and aquifer by ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Earth Science Frontiers, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    CrossRef Google Scholar

    [42] Olomukoro A A, Emmons R V, Godage N H, et al. Ion exchange solid phase microextraction coupled to liquid chromatography/laminar flow tandem mass spectrometry for the determination of perfluoroalkyl substances in water samples[J]. Journal of Chromatography A, 2021, 1651: 462335. doi: 10.1016/j.chroma.2021.462335

    CrossRef Google Scholar

    [43] 史丽, 王兴, 杨艳, 等. 固相萃取-高效液相色谱-串联质谱检测污水中14种全氟化合物[J]. 化学研究与应用, 2024, 36(3): 647−654.

    Google Scholar

    Shi L, Wang X, Yang Y, et al. Detection of 14 perfluorinated compounds in wastewater based on solid phase extraction-high performance liquid chromato-graphy-tandem mass spectrometry[J]. Chemical Research and Application, 2024, 36(3): 647−654.

    Google Scholar

    [44] 罗佳, 杨海兵, 张秋萍, 等. 超高效液相色谱-三重四极杆串联质谱法快速测定人体血清中12种传统和新型全氟化合物的含量[J/OL]. 理化检验(化学分册)(2024-06-06)[2024-08-12]. https://link.cnki.net/urlid/31.1337.TB.20240605.1755.002.

    Google Scholar

    Luo J, Yang H B, Zhang Q P, et al. Rapid determination of 12 Traditional and emerging per- and polyfluoroalkyl substances in human serum by ultra-high performance liquid chromatography-tandem mass spectrometry[J/OL]. Physical testing and chemical analysis (Part B: Chemical analysis) (2024-06-06)[2024-08-12]. https://link.cnki.net/urlid/31.1337.TB.20240605.1755.002.

    Google Scholar

    [45] 赵陈晨, 陈勇, 侯晓玲, 等. 在线固相萃取-液相色谱-串联质谱法直接测定水中15种全氟烷基化合物[J]. 中国环境监测, 2024, 40(2): 185−197. doi: 10.19316/j.issn.1002-6002.2024.02.21

    CrossRef Google Scholar

    Zhao C C, Chen Y, Hou X L, et al. Direct Determination of 15 kinds of perfluoroalkyl substances in water by liquid chromatography-tandem mass spectrometry coupled with online solid phase extraction[J]. Environmental Monitoring in China, 2024, 40(2): 185−197. doi: 10.19316/j.issn.1002-6002.2024.02.21

    CrossRef Google Scholar

    [46] 王帆, 吴婧, 庄意如, 等. 超高效液相色谱-串联质谱法测定大气中18种全氟和多氟烷基化合物[J]. 分析化学, 2023, 51(8): 1371−1383. doi: 10.19756/j.issn.0253-3

    CrossRef Google Scholar

    Wang F, Wu J, Zhuang Y R, et al. Determination of 18 kinds of per- and polyfluoroalkyl substances in atmosphere by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2023, 51(8): 1371−1383. doi: 10.19756/j.issn.0253-3

    CrossRef Google Scholar

    [47] 申楠, 韩同竹, 盛璨璨, 等. 在线固相萃取净化-液相色谱-串联质谱法直接测定植物粗提物中的23种全氟化合物[J]. 分析化学, 2024, 52(2): 286−300. doi: 10.19756/j.issn.0253-3820.231167

    CrossRef Google Scholar

    Shen N, Han T Z, Sheng C C, et al. Direct determination of 23 kinds of per- and polyfluoroalkyl substances in crude plant extracts by liquid chromatography-tandem mass spectrometry coupled with online solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2024, 52(2): 286−300. doi: 10.19756/j.issn.0253-3820.231167

    CrossRef Google Scholar

    [48] 邬晶晶, 桂萍, 郭风巧. 固相萃取-UPLC-MS/MS法测定水中17种全氟化合物[J]. 中国给水排水, 2022, 38(12): 28−36. doi: 10.19853/j.zgjsps.1000-4602.2022.12.005

    CrossRef Google Scholar

    Wu J J, Gui P, Guo F Q. SPE-UPLC-MS/MS for determination of 17 PFCs in water[J]. China Water & Wastewater, 2022, 38(12): 28−36. doi: 10.19853/j.zgjsps.1000-4602.2022.12.005

    CrossRef Google Scholar

    [49] 石刚, 凌婷, 李慧玲, 等. 高效液相色谱-串联质谱法测定医用口罩中8种全氟化合物[J]. 分析科学学报, 2024, 40(1): 50−56. doi: 10.13526/j.issn.1006-6144.2024.01.008

    CrossRef Google Scholar

    Shi G, Lin T, Li H L, et al. Determination of 8 perfluorinated compounds in medical mask by HPLC-MS/MS[J]. Journal of Analytical Science, 2024, 40(1): 50−56. doi: 10.13526/j.issn.1006-6144.2024.01.008

    CrossRef Google Scholar

    [50] Yang C, Lee H K, Zhang Y, et al. In situ detection and imaging of pfos in mouse kidney by matrix-assisted laser desorption/ionization imaging mass spectrometry[J]. Analytical Chemistry, 2019, 91(14): 8783−8788. doi: 10.1021/acs.analchem.9b00711

    CrossRef Google Scholar

    [51] Ahmed E, Xiao D, Dumlao M C, et al. Nanosecond pulsed dielectric barrier discharge ionization mass spectrometry[J]. Analytical Chemistry, 2020, 92(6): 4468−4474. doi: 10.1021/acs.analchem.9b05491

    CrossRef Google Scholar

    [52] 郭庆伟, 王倩, 张海东, 等. 新污染物检测技术研究进展[J]. 化学通报, 2024, 87(1): 78−75. doi: 10.14159/j.cnki.0441-3776.2024.01.003

    CrossRef Google Scholar

    Guo Q W, Wang Q, Zhang H D, et al. Research progress in detection technology of emerging pollutants[J]. Chemistry Bulletin, 2024, 87(1): 78−75. doi: 10.14159/j.cnki.0441-3776.2024.01.003

    CrossRef Google Scholar

    [53] Wang Z, Buser A M, Cousins I T, et al. A new OECD definition for per- and polyfluoroalkyl substances[J]. Environmental Science & Technology, 2021, 55: 15575−15578. doi: 10.1021/acs.est.1c06896

    CrossRef Google Scholar

    [54] Olson K L, Rinehart K L, Cook J C, et al. Phosphazenes: High molecular weight reference compounds for field desorption mass spectrometry[J]. Biomedical Mass Spectrometry, 1977, 4: 284−290. doi: 10.1002/bms.1200040503

    CrossRef Google Scholar

    [55] Hu J, Lyu Y, Chen H, et al. Integration of target, suspect, and nontarget screening with risk modeling for per- and polyfluoroalkyl substances prioritization in surface waters[J]. Water Research, 2023, 233: 119735. doi: 10.1016/j.watres.2023.119735

    CrossRef Google Scholar

    [56] Shojaei M, Kumar N, Guelfo J L. An Integrated approach for determination of total per- and polyfluoroalkyl substances (PFAs)[J]. Environmental Science & Technology, 2022, 56(20): 14517−14527. doi: 10.1021/acs.est.2c05143

    CrossRef Google Scholar

    [57] Nganda A, Kumar M, Uday V, et al. EI/IOT of PFCs: Environmental impacts/interactions, occurrences, and toxicities of perfluorochemicals[J]. Environmental Research, 2023, 218: 114707. doi: 10.1016/j.envres.2022.114707

    CrossRef Google Scholar

    [58] Taylor R B, Sapozhnikova Y. Comparison and validation of the QuEChERSER mega-method for determination of per- and polyfluoroalkyl substances in foods by liquid chromatography with high-resolution and triple quadrupole mass spectrometry[J]. Analytica Chimica Acta, 2022, 1230: 340400. doi: 10.1016/j.aca.2022.340400

    CrossRef Google Scholar

    [59] Huerta B, Mchugh B, Regan F. Development and application of an LC-MS method to the determination of poly- and perfluoroalkyl substances (PFASs) in drinking, sea and surface water samples[J]. Analytical Methods, 2022, 14(21): 2090−2099. doi: 10.1039/D2AY00300G

    CrossRef Google Scholar

    [60] 周画天, 黄帝, 刘晓雨, 等. 超高效液相色谱-串联质谱法同时测定水中两类含氟新污染物[J]. 分析试验室, 2024, 43(12): 1655−1661. doi: 10.13595/j.cnki.issn1000-0720.2023100804

    CrossRef Google Scholar

    Zhou H T, Huang D, Liu X Y, et al. Simultaneous determination of two types of emerging fluorinated pollutants in water by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2024, 43(12): 1655−1661. doi: 10.13595/j.cnki.issn1000-0720.2023100804

    CrossRef Google Scholar

    [61] 唐韵熙, 白亚敏, 刘露露, 等. 超高效液相色谱-串联质谱法同时测定动物源性食品中21种全氟类化合物残留[J]. 食品与机械, 2023, 39(7): 29−39. doi: 10.13652/j.spjx.1003.5788.2022.81188

    CrossRef Google Scholar

    Tang Y X, Bai Y M, Liu L L, et al. Simultaneous determination of 21 perfluorinated compounds in animal-derived food by UPLC-MS/MS[J]. Food and Machinery, 2023, 39(7): 29−39. doi: 10.13652/j.spjx.1003.5788.2022.81188

    CrossRef Google Scholar

    [62] 宋新力, 王宁, 何飞燕, 等. 碳纳米管复合材料结合分散固相萃取-高效液相色谱-串联质谱法检测环境水样中痕量全氟化合物[J]. 色谱, 2023, 41(5): 409−416. doi: 10.3724/SP.J.1123.2022.09016

    CrossRef Google Scholar

    Song X L, Wang N, He F Y, et al. Determination of trace perfluorinated compounds in environmental water samples by dispersive solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry using carbon nanotube composite materials[J]. Chinese Journal of Chromatography, 2023, 41(5): 409−416. doi: 10.3724/SP.J.1123.2022.09016

    CrossRef Google Scholar

    [63] 乔肖翠, 赵兴茹, 郭睿, 等. 典型岩溶区水环境中全氟化合物分布特征及风险评价[J]. 环境科学研究, 2019, 32(12): 2148−2156. doi: 10.13198/j.issn.1001-6929.2019.03.05

    CrossRef Google Scholar

    Qiao X C, Zhao X R, Guo R, et al. Distribution characteristics and risk assessment of per- and polyfluoroalkyl substances in water environment in typical karst region[J]. Research of Environmental Sciences, 2019, 32(12): 2148−2156. doi: 10.13198/j.issn.1001-6929.2019.03.05

    CrossRef Google Scholar

    [64] 金梦, 刘丽君, 赵波, 等. 长三角地区水体中全氟化合物的污染特征及风险评价[J]. 环境化学, 2023, 42(7): 2153−2162. doi: 10.7524/j.issn.0254-6108.2022022002

    CrossRef Google Scholar

    Jin M, Liu L J, Zhao B, et al. Pollution characteristics and risk assessment of perfluoroalkyl substances in surface water from Yangtze River Delta[J]. Environmental Chemistry, 2023, 42(7): 2153−2162. doi: 10.7524/j.issn.0254-6108.2022022002

    CrossRef Google Scholar

    [65] 温祥洁, 王若男, 钟亚萍, 等. 成都市某工业园区及周围表层土壤中全氟化合物的分布特征与风险评估[J]. 环境化学, 2024, 43(4): 1292−1303. doi: 10.7524/j.issn.0254-6108.2022101104

    CrossRef Google Scholar

    Wen X J, Wang R N, Zhong Y P, et al. Distribution characteristics and risk assessment of perfluoroalkyl substances in surface soils in and around an industrial park in Chengdu[J]. Environmental Chemistry, 2024, 43(4): 1292−1303. doi: 10.7524/j.issn.0254-6108.2022101104

    CrossRef Google Scholar

    [66] 温祥洁, 陈朝辉, 徐维新, 等. 青藏高原东北部地区表层土壤中全氟化合物的分布特征及来源解析[J]. 环境科学, 2022, 43(6): 3253−3261. doi: 10.13227/j.hjkx.202110139

    CrossRef Google Scholar

    Wen X J, Chen Z H, Xu W X, et al. Distribution characteristics and source apportionment of perfluoroalkyl substances in surface soils of the northeast Tibetan Plateau[J]. Environmental Science, 2022, 43(6): 3253−3261. doi: 10.13227/j.hjkx.202110139

    CrossRef Google Scholar

    [67] 武倩倩, 吴强, 宋帅, 等. 天津市主要河流和土壤中全氟化合物空间分布、来源及风险评价[J]. 环境科学, 2021, 42(8): 3682−3694. doi: 10.13227/j.hjkx.202012044

    CrossRef Google Scholar

    Wu Q Q, Wu Q, Song S, et al. Distribution, sources, and risk assessment of polyfluoroalkyl substances in main rivers and soils of Tianjin[J]. Environmental Science, 2021, 42(8): 3682−3694. doi: 10.13227/j.hjkx.202012044

    CrossRef Google Scholar

    [68] 张红霞, 张洪昌, 胡双庆, 等. 太浦河水体和沉积物中24种全氟化合物分布特征[J]. 环境化学, 2024, 43(3): 722−733. doi: 10.7524/j.issn.0254-6108.2022090704

    CrossRef Google Scholar

    Zhang H X, Zhang H C, Hu S Q, et al. Distribution characteristics of 24 perfluorocarbons in Taipu river and sediments[J]. Environmental Chemistry, 2024, 43(3): 722−733. doi: 10.7524/j.issn.0254-6108.2022090704

    CrossRef Google Scholar

    [69] 黄家浩, 吴玮, 黄天寅, 等. 骆马湖表层水和沉积物中全氟化合物赋存特征、来源及健康风险评估[J]. 环境科学, 2022, 43(7): 3562−3574. doi: 10.13227/j.hjkx.202108335

    CrossRef Google Scholar

    Huang J H, Wu W, Huang T Y, et al. Characteristics, sources, and risk assessment of perlyfluoroalkyl substances in surface water and sediment of Luoma Lake[J]. Environmental Science, 2022, 43(7): 3562−3574. doi: 10.13227/j.hjkx.202108335

    CrossRef Google Scholar

    [70] Zhang C, Hopkins Z, McCord J, et al. Fate of per- and polyfluoroalkyl ether acids in the total oxidizable precursor assay and implications for the analysis of impacted water[J]. Environmental Science & Technology Letters, 2019, 6(11): 662−668. doi: 10.1021/acs.estlett.9b00525

    CrossRef Google Scholar

    [71] Ateia M, Chiang D, Cashman M, et al. Total oxidizable precursor (TOP) assay-best practices, capabilities and limitations for PFAS site investigation and remediation[J]. Environmental Science & Technology Letters, 2023, 10(4): 292−301. doi: 10.1021/acs.estlett.3c00061

    CrossRef Google Scholar

    [72] Place B J, Field J A. Identification of novel fluorochemicals in aqueous film-forming foams used by the US military[J]. Environmental Science & Technology, 2012, 46(13): 7120−7127. doi: 10.1021/es301465n

    CrossRef Google Scholar

    [73] D’Agostino L A, Mabury S A. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates[J]. Environmental Science & Technology, 2014, 48(1): 121−129. doi: 10.1021/es403729e

    CrossRef Google Scholar

    [74] Trier X, Granby K, Christensen J H. Polyfluorinated surfactants (PFS) in paper and board coatings for food packaging[J]. Environmental Science and Pollution Research International, 2011, 18(7): 1108−1120. doi: 10.1007/s11356-010-0439-3

    CrossRef Google Scholar

    [75] Liu Y, D’Agostino L A, Qu G, et al. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyltances (PFASs) in environmental and human samples[J]. TRAC-Trends in Analytical Chemistry, 2019, 121: 115420. doi: 10.1016/j.trac.2019.02.021

    CrossRef Google Scholar

    [76] 营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394−403. doi: 10.15898/j.cnki.11-2131/td.202111060168

    CrossRef Google Scholar

    Ying J L, Qin X P, Lang H, et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394−403. doi: 10.15898/j.cnki.11-2131/td.202111060168

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(5) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint