Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 4
Article Contents

HE Zejing, FANG Liping, LIU Chuanping, HUANG Yao. A Review of Research Progress on Environmental Fate and Toxic Effects of Antibiotic-Heavy Metal Co-Contamination in Soil-Crop Systems[J]. Rock and Mineral Analysis, 2025, 44(4): 658-668. doi: 10.15898/j.ykcs.202501280014
Citation: HE Zejing, FANG Liping, LIU Chuanping, HUANG Yao. A Review of Research Progress on Environmental Fate and Toxic Effects of Antibiotic-Heavy Metal Co-Contamination in Soil-Crop Systems[J]. Rock and Mineral Analysis, 2025, 44(4): 658-668. doi: 10.15898/j.ykcs.202501280014

A Review of Research Progress on Environmental Fate and Toxic Effects of Antibiotic-Heavy Metal Co-Contamination in Soil-Crop Systems

More Information
  • With the rapid development of industry, the issue of combined antibiotic-heavy metal contamination in farmland has become increasingly severe, threatening agricultural product safety and human health. However, current understanding of the environmental behaviors (migration, transformation, uptake, and accumulation) of combined antibiotic-heavy metal contamination in soil-crop systems and their toxic effects on soil organisms and crops remains incomplete, hindering the formulation of governance strategies for such contamination in farmland soils. This review reports on the current status of combined antibiotic-heavy metal contamination in Chinese farmland and the environmental fate and toxic effects in soil-crop systems. Existing studies show that combined contamination is observed in farmland soils, primarily sourced from livestock manure application, sewage irrigation, and pesticide use. Antibiotics and heavy metals can form stable complexes, whose environmental behaviors are influenced by soil organic matter, pH, and ion competition; after plant uptake, they mainly accumulate in roots and transfer to aboveground parts, with leafy vegetables exhibiting significantly higher enrichment capacity than legumes. Combined contamination exacerbates the spread of antibiotic resistance genes and heavy metal resistance genes through co-resistance mechanisms. Its toxicological effects are also more complex, presenting synergistic, antagonistic, or additive effects, leading to reduced soil microbial diversity, dysfunction of soil animal physiology, and oxidative stress damage in crops, thereby affecting crop growth and quality. However, current research has only reported short-term results for a few types of heavy metals, antibiotics, and crops, with unclear differences in outcomes under different doses and combinations. Future research is recommended in the aspects as follow: (1) Focusing on risk thresholds and precise management of combined antibiotic-heavy metal contamination, clarify safety thresholds through dynamic assessment models, develop traceability technologies for agricultural inputs and matching systems for pollution remediation, and achieve safe utilization of contaminated arable land; (2) Strengthening mechanistic studies on combined contamination under different combinations, exploring the environmental fate and toxic effect mechanisms at cellular, molecular, and genetic levels for different complexes formed by antibiotics and heavy metals, investigating the influencing mechanisms of environmental factors, advancing understanding of co-resistance gene transmission patterns, and cultivating and screening co-resistant crop varieties—thereby providing theoretical support for precise risk management of combined antibiotic-heavy metal contamination in farmland and promoting green agricultural development.

  • 加载中
  • [1] Barathe P, Kaur K, Reddy S, et al. Antibiotic pollution and associated antimicrobial resistance in the environment[J]. Journal of Hazardous Materials Letters, 2024, 5: 100105. doi: 10.1016/j.hazl.2024.100105

    CrossRef Google Scholar

    [2] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772−6782. doi: 10.1021/acs.est.5b00729

    CrossRef Google Scholar

    [3] Shu Y X, Li D H, Xie T, et al. Antibiotics-heavy metals combined pollution in agricultural soils: Sources, fate, risks, and countermeasures[J]. Green Energy & Environment, 2025, 10: 869−897. doi: 10.1016/j.gee.2024.07.007

    CrossRef Google Scholar

    [4] Wu J, Wang J, Li Z, et al. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(7): 847−864. doi: 10.1080/10643389.2022.2094693

    CrossRef Google Scholar

    [5] 苗荪, 陈磊, 左剑恶. 环境中抗生素抗性基因丰度与抗生素和重金属含量的相关性分析: 基于Web of Science数据库检索[J]. 环境科学, 2021, 42(10): 4925−4932. doi: 10.13227/j.hjkx.202101043

    CrossRef Google Scholar

    Miao S, Chen L, Zuo J E. Correlation analysis among environmental antibiotic resistance genes abundance, antibiotics concentrations, and heavy metals concentrations based on Web of Science searches[J]. Environmental Science, 2021, 42(10): 4925−4932. doi: 10.13227/j.hjkx.202101043

    CrossRef Google Scholar

    [6] van Boeckel T P, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals[J]. Proceedings of the National Academy of Sciences, 2015, 112(18): 5649−5654. doi: 10.1073/pnas.1503141112

    CrossRef Google Scholar

    [7] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R]. 2014.

    Google Scholar

    [8] 余涛, 蒋天宇, 刘旭, 等. 土壤重金属污染现状及检测分析技术研究进展[J]. 中国地质, 2021, 48(2): 460−476. doi: 10.12029/gc20210208

    CrossRef Google Scholar

    Yu T, Jiang T Y, Liu X, et al. Research progress in current status of soil heavy metal pollution and analysis technology[J]. Geology in China, 2021, 48(2): 460−476. doi: 10.12029/gc20210208

    CrossRef Google Scholar

    [9] 苏炤新, 赵传明, 董希良, 等. 我国抗生素环境污染及管理现状[J]. 环境卫生学杂志, 2025, 15(1): 31−37. doi: 10.13421/j.cnki.hjwsxzz.2025.01.004

    CrossRef Google Scholar

    Su Z X, Zhao C M, Dong X L, et al. Current situation of environmental contamination and management of antibiotics in China[J]. Journal of Environmental Hygiene, 2025, 15(1): 31−37. doi: 10.13421/j.cnki.hjwsxzz.2025.01.004

    CrossRef Google Scholar

    [10] Qi M, Liang B, Zhang L, et al. Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes[J]. Environmental Science & Technology, 2021, 55(5): 3270−3282. doi: 10.1021/acs.est.0c06687

    CrossRef Google Scholar

    [11] Wei M, Pan A, Ma R. Migration characteristics and human health risk assessment of selenium and heavy metals in rhizosphere soil-crop system in high geological background area of southern Qinling Mountains: A case study of Shiquan County, Shaanxi, China[J]. Ecotoxicology and Environmental Safety, 2025, 294: 118013. doi: 10.1016/j.ecoenv.2025.118013

    CrossRef Google Scholar

    [12] Liu Z T, Ma R A, Zhu D, et al. Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome[J]. Nature Communications, 2024, 15(1): 5168. doi: 10.1038/s41467-024-49165-5

    CrossRef Google Scholar

    [13] Yan Q, Zhong Z, Li X, et al. Characterization of heavy metal, antibiotic pollution, and their resistance genes in paddy with secondary municipal-treated wastewater irrigation[J]. Water Research, 2024, 252: 121208. doi: 10.1016/j.watres.2024.121208

    CrossRef Google Scholar

    [14] Zhao F, Yang L, Chen L, et al. Co-contamination of antibiotics and metals in peri-urban agricultural soils and source identification[J]. Environmental Science and Pollution Research, 2018, 25: 34063−34075. doi: 10.1007/s11356-018-3350-y

    CrossRef Google Scholar

    [15] Zhu H, He J, Wu Y, et al. Assessment of global antibiotic exposure risk for crops: Incorporating soil adsorption via machine learning[J]. Environmental Science & Technology, 2024, 58(30): 13327−13336. doi: 10.1021/acs.est.4c03695

    CrossRef Google Scholar

    [16] 白宗旭, 杨雳, 王宏蕾, 等. 中国城乡交错带土壤-农作物重金属污染的Meta分析[J]. 环境科学, 2024, 45(8): 4766−4779. doi: 10.13227/j.hjkx.202309165

    CrossRef Google Scholar

    Bai Z X, Yang L, Wang H L, et al. Meta-analysis of heavy metal pollution in soil-crop systems in China’s urban-rural fringe[J]. Environmental Science, 2024, 45(8): 4766−4779. doi: 10.13227/j.hjkx.202309165

    CrossRef Google Scholar

    [17] 王成尘, 田稳, 向萍, 等. 土壤-水稻/小麦重金属吸收机制与安全调控[J]. 中国环境科学, 2022, 42(2): 794−807. doi: 10.3969/j.issn.1000-6923.2022.02.034

    CrossRef Google Scholar

    Wang C C, Tian W, Xiang P, et al. Mechanism of heavy metal uptake and transport in soil-rice/wheat system and regulation measures for safe production[J]. China Environmental Science, 2022, 42(2): 794−807. doi: 10.3969/j.issn.1000-6923.2022.02.034

    CrossRef Google Scholar

    [18] 王义佳, 邹韵, 汤欣悦, 等. 菜地系统中抗生素污染特征及生态效应研究进展[J]. 环境化 学, 2024, 43(6): 1805−1819. doi: 10.7524/j.issn.0254-6108.2022121402

    CrossRef Google Scholar

    Wang Y J, Zou Y, Tang X Y, et al. Advances in the study of antibiotic pollution characteristics and ecological effects in vegetable field systems[J]. Environmental Chemistry, 2024, 43(6): 1805−1819. doi: 10.7524/j.issn.0254-6108.2022121402

    CrossRef Google Scholar

    [19] 张剑, 鲁伟, 张杉, 等. 市政污泥中重金属和抗生素的含量及其复合污染的生态风险评价[J]. 净水技术, 2025, 44(1): 81−91. doi: 10.15890/j.cnki.jsjs.2025.01.010

    CrossRef Google Scholar

    Zhang J, Lu W, Zhang S, et al. Ecological risk assessment of heavy metals and antibiotic content and its combined pollution in municipal sludge[J]. Water Purification Technology, 2025, 44(1): 81−91. doi: 10.15890/j.cnki.jsjs.2025.01.010

    CrossRef Google Scholar

    [20] Huang S, Wang L, Zhao Y, et al. Ecological risk assessment from the perspective of soil heavy metal accumulations in Xiamen City, China[J]. International Journal of Sustainable Development & World Ecology, 2018, 25(5): 411−419. doi: 10.1080/13504509.2017.1418457

    CrossRef Google Scholar

    [21] Zhang Y, Cai X, Lang X, et al. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture[J]. Environmental Pollution, 2012, 166: 48−56. doi: 10.1016/j.envpol.2012.03.009

    CrossRef Google Scholar

    [22] Khurana P, Pulicharla R, Brar S K. Antibiotic-metal complexes in wastewaters: Fate and treatment trajectory[J]. Environment International, 2021, 157: 106863. doi: 10.1016/j.envint.2021.106863

    CrossRef Google Scholar

    [23] Pulicharla R, Hegde K, Brar S K, et al. Tetracyclines metal complexation: Significance and fate of mutual existence in the environment[J]. Environmental Pollution, 2017, 221: 1−14. doi: 10.1016/j.envpol.2016.12.017

    CrossRef Google Scholar

    [24] Wang Y J, Jia D A, Sun R J, et al. Adsorption and cosorption of tetracycline and copper(Ⅱ) on montmorillonite as affected by solution pH[J]. Environmental Science & Technology, 2008, 42(9): 3254−3259. doi: 10.1021/es702641a

    CrossRef Google Scholar

    [25] Tang T, Yang C, Wang L, et al. Complexation of sulfamethazine with Cd(Ⅱ) and Pb(Ⅱ): Implication for co-adsorption of SMT and Cd(Ⅱ) on goethite[J]. Environmental Science and Pollution Research, 2018, 25: 11576−11583. doi: 10.1007/s11356-017-1026-7

    CrossRef Google Scholar

    [26] Zhao Y, Tan Y, Guo Y,et al. Interactions of tetracycline with Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) and their cosorption behavior in soils[J]. Environmental Pollution, 2013, 180: 206−213. doi: 10.1016/j.envpol.2013.05.043

    CrossRef Google Scholar

    [27] Wegst-Uhrich S R, Navarro D A, Zimmerman L, et al. Assessing antibiotic sorption in soil: A literature review and new case studies on sulfonamides and macrolides[J]. Chemistry Central Journal, 2014, 8: 5. doi: 10.1186/1752-153X-8-5

    CrossRef Google Scholar

    [28] Guo X, Yang C, Wu Y, et al. The influences of pH and ionic strength on the sorption of tylosin on goethite[J]. Environmental Science and Pollution Research, 2014, 21: 2572−2580. doi: 10.1007/s11356-013-2174-z

    CrossRef Google Scholar

    [29] Pei Z G, Shan X Q, Zhang S Z, et al. Insight to ternary complexes of co-adsorption of norfloxacin and Cu(Ⅱ) onto montmorillonite at different pH using EXAFS[J]. Journal of Hazardous Materials, 2011, 186(1): 842−848. doi: 10.1016/j.jhazmat.2010.11.076

    CrossRef Google Scholar

    [30] Liu Z, Jiang Y, He R, et al. Adsorption retention of spiramycin in agricultural calcareous loess soils: Assessing the impact of influential factors and mechanisms[J]. Water, Air & Soil Pollution, 2024, 235(8): 491. doi: 10.1007/s11270-024-07312-0

    CrossRef Google Scholar

    [31] Chen Q, An X, Li H, et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil[J]. Environment International, 2016, 92: 1−10. doi: 10.1016/j.envint.2016.03.026

    CrossRef Google Scholar

    [32] 鲍陈燕, 顾国平, 章明奎. 兽用抗生素胁迫对水芹生长及其抗生素积累的影响[J]. 土壤通报, 2016, 47(1): 164−172. doi: 10.19336/j.cnki.trtb.2016.01.026

    CrossRef Google Scholar

    Bao C Y, Gu G P, Zhang M K. Effects of veterinary antibiotics stress on growth and antibiotics accumulation of Oenanthe javanica DC[J]. Chinese Journal of Soil Science, 2016, 47(1): 164−172. doi: 10.19336/j.cnki.trtb.2016.01.026

    CrossRef Google Scholar

    [33] Kong W D, Zhu Y G, Liang Y C, et al. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L. )[J]. Environmental Pollution, 2007, 147(1): 187−193. doi: 10.1016/j.envpol.2006.08.016

    CrossRef Google Scholar

    [34] 朱峰, 苏丹, 安婧, 等. 磺胺类抗生素在土壤-植物系统中的迁移特征[J]. 生态学杂志, 2017, 36(5): 1402−1407. doi: 10.13292/j.1000-4890.201705.012.

    CrossRef Google Scholar

    Zhu F, Su D, An J, et al. Transport processes of sulfonamide antibiotics in soil-plant system[J]. Chinese Journal of Ecology, 2017, 36(5): 1402−1407. doi: 10.13292/j.1000-4890.201705.012.

    CrossRef Google Scholar

    [35] Shahid M, Dumat C, Khalid S, et al. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake[J]. Journal of Hazardous Materials, 2017, 325: 36−58. doi: 10.1016/j.jhazmat.2016.11.063

    CrossRef Google Scholar

    [36] 李相楹, 何腾兵, 付天岭, 等. 重金属元素在土壤-蔬菜系统中的迁移富集及其毒性机理研究进展[J]. 应用化工, 2021, 50(7): 1932−1937. doi: 10.3969/j.issn.1671-3206.2021.07.041

    CrossRef Google Scholar

    Li X Y, He T B, Fu T L, et al. Review of migration, bioaccumulation and toxicity of heavy metals in soil-vegetables system[J]. Applied Chemical Industry, 2021, 50(7): 1932−1937. doi: 10.3969/j.issn.1671-3206.2021.07.041

    CrossRef Google Scholar

    [37] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013, 110(9): 3435−3440. doi: 10.1073/pnas.1222743110

    CrossRef Google Scholar

    [38] 王文洁, 于丽明, 邵梦莹, 等. 畜禽养殖环境中抗生素抗性基因污染的研究进展[J]. 应用生态学报, 2023, 34(5): 1415−1429. doi: 10.13287/j.1001-9332.202305.032

    CrossRef Google Scholar

    Wang W J, Yu L M, Shao M Y, et al. Research review on the pollution of antibiotic resistance genes in lestock and poultry farming environments[J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1415−1429. doi: 10.13287/j.1001-9332.202305.032

    CrossRef Google Scholar

    [39] Harrison J J, Ceri H, Turner R J. Multimetal resistance and tolerance in microbial biofilms[J]. Nature Reviews Microbiology, 2007, 5(12): 928−938. doi: 10.1038/nrmicro1774

    CrossRef Google Scholar

    [40] Medardus J J, Molla B Z, Nicol M, et al. In-feed use of heavy metal micronutrients in US swine production systems and its role in persistence of multidrug-resistant salmonellae[J]. Applied and Environmental Microbiology, 2014, 80(7): 2317−2325. doi: 10.1128/AEM.04283-13

    CrossRef Google Scholar

    [41] 李大乐, 陈建文, 张红, 等. 铜污染对土壤细菌群落结构及重金属抗性基因的影响[J]. 环境科学学报, 2021, 41(3): 1082−1090. doi: 10.13671/j.hjkxxb.2020.0334

    CrossRef Google Scholar

    Li D L, Chen J W, Zhang H, et al. Effects of copper pollution on soil bacterial community structure and heavy-metal resistance genes[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1082−1090. doi: 10.13671/j.hjkxxb.2020.0334

    CrossRef Google Scholar

    [42] 邱文婕, 秦艳, 高品. 环境中重金属暴露对抗生素抗性基因演变影响研究进展[J]. 环境工程技术学报, 2021, 11(6): 1226−1231. doi: 10.12153/j.issn.1674-991X.20210050

    CrossRef Google Scholar

    Qiu W J, Qin Y, Gao P. Research progress on the effect of heavy metal exposure on the evolution of antibiotic resistance genes in the environment[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1226−1231. doi: 10.12153/j.issn.1674-991X.20210050

    CrossRef Google Scholar

    [43] Ji X J, Shen Q S, Liu F L, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China[J]. Journal of Hazardous Materials, 2012, 235−236: 178−185. doi: 10.1016/j.jhazmat.2012.07.040

    CrossRef Google Scholar

    [44] Wright M S, Peltier G L, Stepanauskas R, et al. Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams[J]. FEMS Microbiology Ecology, 2006, 58(2): 293−302. doi: 10.1111/j.1574-6941.2006.00154.x

    CrossRef Google Scholar

    [45] Knapp C W, McCluskey S M, Singh B K, et al. Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils[J]. PLoS One, 2011, 6(11): e27300. doi: 10.1371/journal.pone.0027300

    CrossRef Google Scholar

    [46] Pan J, Zheng N, An Q, et al. Effects of cadmium and copper mixtures on antibiotic resistance genes in rhizosphere soil[J]. Ecotoxicology and Environmental Safety, 2023, 259: 115008. doi: 10.1016/j.ecoenv.2023.115008

    CrossRef Google Scholar

    [47] Wang J, Wang L, Zhu L, et al. Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy[J]. Critical Reviews in Environmental Science and Technology, 2020(4): 1−43. doi: 10.1080/10643389.2020.1835438

    CrossRef Google Scholar

    [48] Xu Y, Yu W, Ma Q, et al. The combined effect of sulfadiazine and copper on soil microbial activity and community structure[J]. Ecotoxicology and Environmental Safety, 2016, 134: 43−52. doi: 10.1016/j.ecoenv.2016.06.041

    CrossRef Google Scholar

    [49] Wang J, Wang L, Zhu L, et al. Individual and combined effects of enrofloxacin and cadmium on soil microbial biomass and the ammonia-oxidizing functional gene[J]. Science of the Total Environment, 2018, 624: 900−907. doi: 10.1016/j.scitotenv.2017.12.096

    CrossRef Google Scholar

    [50] Kong W D, Zhu Y G, Fu B J, et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community[J]. Environmental Pollution, 2006, 143(1): 129−137. doi: 10.1016/j.envpol.2005.11.003

    CrossRef Google Scholar

    [51] 李明珠, 廖强, 董远鹏, 等. 铜和磺胺嘧啶复合污染对土壤酶活性及微生物群落功能多样性的影响[J]. 土壤, 2020, 52(5): 987−993. doi: 10.13758/j.cnki.tr.2020.05.016

    CrossRef Google Scholar

    Li M Z, Liao Q, Dong Y P, et al. Effects of copper and sulfadiazine combined pollution on soil enzyme activity and metabolic function diversity of microbial community[J]. Soils, 2020, 52(5): 987−993. doi: 10.13758/j.cnki.tr.2020.05.016

    CrossRef Google Scholar

    [52] Gao M, Zhou Q, Song W, et al. Combined effects of oxytetracycline and Pb on earthworm Eisenia fetida[J]. Environmental Toxicology and Pharmacology, 2014, 37(2): 689−696. doi: 10.1016/j.etap.2014.02.004

    CrossRef Google Scholar

    [53] Liu L, He S, Tang M, et al. Pseudo toxicity abatement effect of norfloxacin and copper combined exposure on Caenorhabditis elegans[J]. Chemosphere, 2022, 287: 13201. doi: 10.1016/j.chemosphere.2021.132019

    CrossRef Google Scholar

    [54] Yang R, Wang J, Zhu L, et al. Effects of interaction between enrofloxacin and copper on soil enzyme activity and evaluation of comprehensive toxicity[J]. Chemosphere, 2021, 268: 129208. doi: 10.1016/j.chemosphere.2020.129208

    CrossRef Google Scholar

    [55] Zhao F, Yang L, Yen H, et al. Reducing risks of antibiotics to crop production requires land system intensification within thresholds[J]. Nature Communications, 2023, 14(1): 6094. doi: 10.1038/s41467-023-41258-x

    CrossRef Google Scholar

    [56] Wu X, Cobbina S J, Mao G, et al. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment[J]. Environmental Science and Pollution Research, 2016, 23: 8244−8259. doi: 10.1007/s11356-016-6333-x

    CrossRef Google Scholar

    [57] 李通, 金彩霞, 朱雯斐, 等. 环丙沙星与Cu复合污染对玉米萝卜和小白菜3种作物生态毒性研究[J]. 农业环境科学学报, 2013, 32(1): 15−20. doi: 10.11654/jaes.2013.01.003

    CrossRef Google Scholar

    Li T, Jin C X, Zhu W F, et al. Joint toxicity of CPFX and Cu on seed germination and root elongation of corn, radish and Chinese cabbage[J]. Journal of Agro-Environment Science, 2013, 32(1): 15−20. doi: 10.11654/jaes.2013.01.003

    CrossRef Google Scholar

    [58] Zhou C, Ma Q, Li S, et al. Toxicological effects of single and joint sulfamethazine and cadmium stress in soil on pakchoi (Brassica Chinensis L. )[J]. Chemosphere, 2021, 263: 128296. doi: 10.1016/j.chemosphere.2020.128296

    CrossRef Google Scholar

    [59] Chen Q Y, Wu Z H, Liu J L. Ecotoxicity of chloramphenicol and hg acting on the root elongation of crops in North China[J]. International Journal of Environmental Research, 2011, 5(4): 909−916. doi: 10.22059/IJER.2011.448

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(6) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint