Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 1
Article Contents

MAO Kang, XUE Jiaqi, CHEN Zhuo, ZHANG Hua. Laser Induced Fluorescence for In Situ Detection of Typical Heavy Metals in Groundwater[J]. Rock and Mineral Analysis, 2025, 44(1): 19-34. doi: 10.15898/j.ykcs.202402230018
Citation: MAO Kang, XUE Jiaqi, CHEN Zhuo, ZHANG Hua. Laser Induced Fluorescence for In Situ Detection of Typical Heavy Metals in Groundwater[J]. Rock and Mineral Analysis, 2025, 44(1): 19-34. doi: 10.15898/j.ykcs.202402230018

Laser Induced Fluorescence for In Situ Detection of Typical Heavy Metals in Groundwater

More Information
  • On-site detection of heavy metals in groundwater is important to quickly evaluate pollution. Laser induced fluorescence (LIF) utilizes specific fluorescent probes to generate/quench fluorescence in the presence of heavy metals, thereby achieving heavy metals detection, which can quickly identify heavy metals and non-destructively obtain their valence states. This work summarizes the principle and equipment of, and its application for, in situ detection of typical heavy metals in groundwater. At present, LIF probes used for heavy metal detection include organic fluorescent probes mainly composed of small molecule probes, macromolecules, and AIE probes, as well as nanomaterial probes represented by gold nanoclusters, QDs, and MOFs. These synthesized probes and the corresponding constructed sensors indicate that LIF holds significant advantages in heavy metal detection in groundwater. Although the achievements in the development of LIF equipment for heavy metal detection in groundwater are not as rich as those in sensing methods, LIF equipment for several heavy metals have been developed, demonstrating good application prospects. Future research will focus on identifying the controlling factors of heavy metals in groundwater and developing anti-interference techniques, synthesizing novel fluorescent probes for LIF sensor, integrating sensing components into LIF equipment, and standardizing the LIF detection process. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202402230018.

  • 加载中
  • [1] 杨梦楠, 孙晗, 曹海龙, 等. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155

    CrossRef Google Scholar

    Yang M N, Sun H, Cao H L, et al. Preparation and application of biochar-chitosan magnetic composite adsorbent for removal of lead and copper from groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155

    CrossRef Google Scholar

    [2] 刘斯文, 黄园英, 赵文博, 等. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价[J]. 岩矿测试, 2022, 41(3): 488−498. doi: 10.15898/j.cnki.112131/td.202111080170

    CrossRef Google Scholar

    Liu S W, Huang Y Y, Zhao W B, et al. Water quality and health risk assessment of ion type rare earth deposits in the Huangpi River Basin of Northern Jiangxi Province[J]. Rock and Mineral Analysis, 2022, 41(3): 488−498. doi: 10.15898/j.cnki.112131/td.202111080170

    CrossRef Google Scholar

    [3] Huang C, Guo Z, Li T, et al. Source identification and migration fate of metal(loid)s in soil and groundwater from an abandoned Pb/Zn mine[J]. Science of the Total Environment, 2023, 895: 165037. doi: 10.1016/j.scitotenv.2023.165037

    CrossRef Google Scholar

    [4] Xu M, Zhang K, Wang Y, et al. Health risk assessments and microbial community analyses of groundwater from a heavy metal-contaminated site in Hezhou City, Southwest China[J]. International Journal of Environmental Research and Public Health, 2023, 20(1): 604. doi: 10.3390/ijerph20010604

    CrossRef Google Scholar

    [5] 钟林健. 铅锌矿区地下水位对尾矿中重金属在土壤中吸附与迁移的影响研究[D]. 长沙: 中南大学, 2023.

    Google Scholar

    Zhong L J. Study on the influence of groundwater level on the adsorption and migration of heavy metals from tailings in soil in lead-zinc mining area[D]. Changsha: Central South University, 2023.

    Google Scholar

    [6] Lei K, Giubilato E, Critto A, et al. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China[J]. Environmental Science and Pollution Research, 2016, 23: 13128−13136. doi: 10.1007/s11356-016-6473-z

    CrossRef Google Scholar

    [7] 李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120−132. doi: 10.15898/j.cnki.11-2131/td.202110080140

    CrossRef Google Scholar

    Li J C, Cao W G, Pan D, et al. The impact of nitrogen cycling on arsenic migration and enrichment in shallow groundwater of the Yellow River alluvial fan plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120−132. doi: 10.15898/j.cnki.11-2131/td.202110080140

    CrossRef Google Scholar

    [8] 周兴辉, 胡敬芳, 宋钰, 等. 便携式水质重金属电化学检测仪的研究进展[J]. 传感器世界, 2020, 26(3): 7−13. doi: 10.16204/j.cnki.sw.2020.03.001

    CrossRef Google Scholar

    Zhou X H, Hu J F, Song Y, et al. Research progress on portable electrochemical detection instruments for heavy metals in water quality[J]. Sensor World, 2020, 26(3): 7−13. doi: 10.16204/j.cnki.sw.2020.03.001

    CrossRef Google Scholar

    [9] Yu L, Pang Y, Mo Z, et al. Coordination array for accurate colorimetric sensing of multiple heavy metal ions[J]. Talanta, 2021, 231: 122357. doi: 10.1016/j.talanta.2021.122357

    CrossRef Google Scholar

    [10] Meng D, Zhao N, Wang Y, et al. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 137: 39−45. doi: 10.1016/j.sab.2017.09.011

    CrossRef Google Scholar

    [11] Yang Z, Ren J, Du M, et al. Enhanced laser-induced breakdown spectroscopy for heavy metal detection in agriculture: A review[J]. Sensors, 2022, 22(15): 5679. doi: 10.3390/s22155679

    CrossRef Google Scholar

    [12] 孔维恒, 曾令伟, 饶宇, 等. 基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析[J]. 岩矿测试, 2023, 42(4): 760−770. doi: 10.15898/j.ykcs.202212190234

    CrossRef Google Scholar

    Kong W H, Zeng L W, Rao Y, et al. Laser induced breakdown spectroscopy technology based on pre classification strategy for quantitative analysis of rock samples[J]. Rock and Mineral Analysis, 2023, 42(4): 760−770. doi: 10.15898/j.ykcs.202212190234

    CrossRef Google Scholar

    [13] 文志明. 荧光光度法及其在环境分析化学中的应用[J]. 中国环境监测, 1992, 8(2): 45−55. doi: 10.19316/j.issn.1002-6002.1992.02.018

    CrossRef Google Scholar

    Wen Z M. Fluorescence spectrophotometry and its application in environmental analytical chemistry[J]. Environmental Monitoring in China, 1992, 8(2): 45−55. doi: 10.19316/j.issn.1002-6002.1992.02.018

    CrossRef Google Scholar

    [14] 李卿硕. 荧光光谱检测设计与研究[D]. 长春: 长春理工大学, 2008.

    Google Scholar

    Li Q S. Design and research of fluorescence spectroscopy detection[D]. Changchun: Changchun University of Technology, 2008.

    Google Scholar

    [15] 梁锡辉, 区伟能, 任豪, 等. 激光诱导荧光检测技术[J]. 激光与光电子学进展, 2008(1): 65−72.

    Google Scholar

    Liang X H, Qu W N, Ren H, et al. Laser induced fluorescence detection technology[J]. Laser & Optoelectronics Progress, 2008(1): 65−72.

    Google Scholar

    [16] 杨仁杰, 尚丽平, 鲍振博, 等. 激光诱导荧光快速直接检测土壤中多环芳烃污染物的可行性研究[J]. 光谱学与光谱分析, 2011, 31(8): 2148−2150. doi: 10.3964/j.issn.1000-0593(2011)08-2148-03

    CrossRef Google Scholar

    Yang R J, Shang L P, Bao Z B, et al. Feasibility study on laser induced fluorescence for rapid and direct detection of polycyclic aromatic hydrocarbon pollutants in soil[J]. Spectroscopy and Spectral Analysis, 2011, 31(8): 2148−2150. doi: 10.3964/j.issn.1000-0593(2011)08-2148-03

    CrossRef Google Scholar

    [17] 王宁. 定量测量OH基浓度的PLIF技术研究及应用[D]. 北京: 国防科学技术大学, 2009.

    Google Scholar

    Wang N. Research and application of PLIF technology for quantitative measurement of hydroxyl radical concentration[D]. Beijing: National University of Defense Technology, 2009.

    Google Scholar

    [18] Zacharioudaki D E, Fitlis I, Kotti M. Review of fluorescence spectroscopy in environmental quality applications[J]. Molecules, 2022, 27(15): 4801. doi: 10.3390/molecules27154801

    CrossRef Google Scholar

    [19] Li B, Zhang D, Liu J, et al. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics[J]. Applied Sciences, 2019, 9(9): 1906. doi: 10.3390/app9091906

    CrossRef Google Scholar

    [20] Radiul S M, Hazarika S. Variation of stokes shift and peak wavelength shift as a sensing probe for detection of lead in water using laser induced fluorescence resonance energy transfer[J]. Journal of Fluorescence, 2021, 31(3): 889−896. doi: 10.1007/s10895-021-02689-1

    CrossRef Google Scholar

    [21] 汪宝堆, 李欣悦, 张华, 等. 一种近红外二区甲基汞离子检测探针及其制备方法和应用: CN202210944448.3[P]. 2022-09-16.

    Google Scholar

    [22] 朱鑫琦, 张佩, 王光辉, 等. 一种激光诱导荧光的地下水重金属原位检测装置: CN202122186045.0[P]. 2022-04-01.

    Google Scholar

    [23] 汪宝堆, 常新月, 张华, 等. 一种超灵敏检测水中Cr(Ⅵ)离子敏感膜及其制备方法: CN202111157635.9[P]. 2021-11-19.

    Google Scholar

    [24] 谢胜, 杨羽娇, 吴淑军, 等. 检测汞离子的荧光探针、固态传感薄膜及其制备和应用: CN20211127665.5[P]. 2021-09-26.

    Google Scholar

    [25] Wan J, Zhang K, Li C, et al. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb2+ ion[J]. Sensors and Actuators B: Chemical, 2017, 246: 696−702. doi: 10.1016/j.snb.2017.02.126

    CrossRef Google Scholar

    [26] Dai Y, Yao K, Fu J, et al. A novel 2-(hydroxymethyl)quinolin-8-ol-based selective and sensitive fluorescence probe for Cd2+ ion in water and living cells[J]. Sensors and Actuators B: Chemical, 2017, 251: 877−884. doi: 10.1016/j.snb.2017.05.103

    CrossRef Google Scholar

    [27] Pang B J, Li Q, Li C R, et al. A highly selective and sensitive coumarin derived fluorescent probe for detecting Hg2+ in 100% aqueous solutions[J]. Journal of Luminescence, 2019, 205: 446−450. doi: 10.1016/j.jlumin.2018.09.042

    CrossRef Google Scholar

    [28] Pan J, Li Q, Zhou D, et al. Ultrasensitive aptamer biosensor for arsenic(Ⅲ) detection based on label-free triple-helix molecular switch and fluorescence sensing platform[J]. Talanta, 2018, 189: 370−376. doi: 10.1016/j.talanta.2018.07.024

    CrossRef Google Scholar

    [29] Wu Y, Shi Y, Deng S, et al. Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea[J]. Food Chemistry, 2020, 343: 128425. doi: 10.1016/j.foodchem.2020.128425

    CrossRef Google Scholar

    [30] Su M, Liu C, Zhang Y, et al. Rational design of a water-soluble TICT-AIEE-active fluorescent probe for mercury ion detection[J]. Analytica Chimica Acta, 2022, 1230: 340337. doi: 10.1016/j.aca.2022.340337

    CrossRef Google Scholar

    [31] Wu S, Yang Y, Cheng Y, et al. Fluorogenic detection of mercury ion in aqueous environment using hydrogel-based AIE sensing films[J]. Aggregate, 2022, 4: e287. doi: 10.1002/agt2.287

    CrossRef Google Scholar

    [32] He J, Yun L, Cheng X. Organic-soluble chitosan-g-PHMA (PEMA/PBMA)-bodipy fluorescent probes and film by RAFT method for selective detection of Hg2+/Hg+ ions[J]. International Journal of Biological Macromolecules, 2023, 237: 124255. doi: 10.1016/j.ijbiomac.2023.124255

    CrossRef Google Scholar

    [33] Yuan H, Ren T, Luo Q, et al. Fluorescent wood with non-cytotoxicity for effective adsorption and sensitive detection of heavy metals[J]. Journal of Hazardous Materials, 2021, 416: 126166. doi: 10.1016/j.jhazmat.2021.126166

    CrossRef Google Scholar

    [34] Shi Y, Li W, Feng X, et al. Sensing of mercury ions in porphyra by copper@gold nanoclusters based ratiometric fluorescent aptasensor[J]. Food Chemistry, 2020, 344(5): 128694. doi: 10.1016/j.foodchem.2020.128694

    CrossRef Google Scholar

    [35] Yao J, He Y, Li P Y, et al. Magnified fluorescent aptasensors based on a gold nanoparticle-DNA hybrid and DNase Ⅰ for the cycling detection of mercury(Ⅱ) ions in aqueous solution[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21201−21207. doi: 10.1021/acs.iecr.9b03622

    CrossRef Google Scholar

    [36] Wang Y, Lv M, Chen Z, et al. A fluorescence resonance energy transfer probe based on DNA-modified upconversion and gold nanoparticles for detection of lead ions[J]. Frontiers in Chemistry, 2020, 8: 238. DOI: 10.3389/fchem.2020.00238.eCollection 2020.

    CrossRef Google Scholar

    [37] Liu R, He B, Jin H, et al. A fluorescent aptasensor for Pb2+ detection based on gold nanoflowers and RecJf exonuclease-induced signal amplification[J]. Analytica Chimica Acta, 2022, 1192: 339329. doi: 10.1016/j.aca.2021.339329

    CrossRef Google Scholar

    [38] Yang Y, Yang Y, Xiao X, et al. One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions[J]. Materials Research Express, 2019, 6(9): 095615. doi: 10.1088/2053-1591/ab3006

    CrossRef Google Scholar

    [39] Abdolmohammad-Zadeh H, Azari Z, Pourbasheer E. Fluorescence resonance energy transfer between carbon quantum dots and silver nanoparticles: Application to mercuric ion sensing[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 245: 118924. doi: 10.1016/j.saa.2020.118924

    CrossRef Google Scholar

    [40] Zhou J, Li B, Qi A, et al. ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip[J]. Sensors and Actuators B: Chemical, 2019, 305: 127462. doi: 10.1016/j.snb.2019.127462

    CrossRef Google Scholar

    [41] Bandia R, Dadigalaa R, Gangapuram B R, et al. Green synthesis of highly fluorescent nitrogen-doped carbon dots from Lantana camara berries for effective detection of lead(Ⅱ) and bioimaging[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 178: 330−338. doi: 10.1016/j.jphotobiol.2017.11.010

    CrossRef Google Scholar

    [42] Khoshbin Z, Moeenfard M, Zahraee H, et al. A fluorescence imaging-supported aptasensor for sensitive monitoring of cadmium pollutant in diverse samples: A critical role of metal organic frameworks[J]. Talanta, 2022, 246: 123514. doi: 10.1016/j.talanta.2022.123514

    CrossRef Google Scholar

    [43] Chen G, Bai W, Jin Y, et al. Fluorescence and electrochemical assay for bimodal detection of lead ions based on metal-organic framework nanosheets[J]. Talanta, 2021, 232: 122405. doi: 10.1016/j.talanta.2021.122405

    CrossRef Google Scholar

    [44] Hou L, Song Y, Xiao Y, et al. ZnMOF-74 responsive fluorescence sensing platform for detection of Fe3+[J]. Microchemical Journal, 2019, 150: 104154. doi: 10.1016/j.microc.2019.104154

    CrossRef Google Scholar

    [45] Zhang X X, Zhang W J, Li C L, et al. Eu3+-postdoped UIO-66-type metal-organic framework as a luminescent sensor for Hg2+ detection in aqueous media[J]. Inorganic Chemistry, 2019, 58(6): 3910−3915. doi: 10.1021/acs.inorgchem.8b03555

    CrossRef Google Scholar

    [46] Valeur B. Design principles of fluorescent molecular sensors for cation recognition[J]. Coordination Chemistry Reviews, 2000, 205: 3−40. doi: 10.1016/s0010-8545(00)00246-0

    CrossRef Google Scholar

    [47] Fan Y, Li J, Amin K, et al. Advances in aptamers, and application of mycotoxins detection: A review[J]. Food Research International, 2023, 170: 113022. doi: 10.1016/j.foodres.2023.113022

    CrossRef Google Scholar

    [48] Wu L, Wang Y, Xu X, et al. Aptamer-based detection of circulating targets for precision medicine[J]. Chemical Reviews, 2021, 121: 12035−12105. doi: 10.1021/acs.chemrev.0c01140

    CrossRef Google Scholar

    [49] Luo J D, Xie Z L, Lam W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 2001, 18: 1740−1741. doi: 10.1039/B105159H

    CrossRef Google Scholar

    [50] Liu B, Zhuang J Y, Wei G. Recent advances in the design of colorimetric sensors for environmental monitoring[J]. Environmental Science: Nano, 2020, 7(8): 2195−2213. doi: 10.1039/d0en00449a

    CrossRef Google Scholar

    [51] Lei X, Li H, Luo Y, et al. Novel fluorescent nanocellulose hydrogel based on gold nanoclusters for the effective adsorption and sensitive detection of mercury ions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123: 79−86. doi: 10.1016/j.jtice.2021.05.044

    CrossRef Google Scholar

    [52] Ren J, Ledwaba M, Musyoka N M, et al. Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews, 2017, 349: 169−197. doi: 10.1016/j.ccr.2017.08.017

    CrossRef Google Scholar

    [53] Ghosh S, Steinke F, Rana A, et al. A fluorescent zirconium organic framework displaying rapid and nanomolar level detection of Hg(Ⅱ) and nitroantibiotics[J]. Inorganic Chemistry Frontiers, 2022, 9: 859−869. doi: 10.1039/D1QI01190A

    CrossRef Google Scholar

    [54] Guo X R, Wei Y, Zeng Q, et al. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots[J]. Journal of Hazardous Materials, 2020, 381: 120969. doi: 10.1016/j.jhazmat.2019.120969

    CrossRef Google Scholar

    [55] Wu F N, Zhu J, Weng G J, et al. Gold nanocluster composites: Preparation strategies, optical and catalytic properties, and applications[J]. Journal of Materials Chemistry C, 2022, 10: 14812−14833. doi: 10.1039/D2TC02095E

    CrossRef Google Scholar

    [56] Dai R, Zhang Y, Huang K, et al. Recent advances in the visual detection of ions and molecules based on gold and silver nanoclusters[J]. Analytical Methods, 2022, 14(29): 2820−2832. doi: 10.1039/d2ay00618a

    CrossRef Google Scholar

    [57] Shang L, Xu J, Nienhaus G U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis[J]. Nano Today, 2019, 28: 100767 . doi: 10.1016/j.nantod.2019.100767

    CrossRef Google Scholar

    [58] Yan Y, Yu H, Zhang K, et al. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions[J]. Nano Research, 2016, 9(7): 2088−2096. doi: 10.1007/s12274-016-1099-5

    CrossRef Google Scholar

    [59] Kirkwood N, Monchen J O V, Crisp R W, et al. Finding and fixing traps in Ⅱ–Ⅵ and Ⅲ–Ⅴ colloidal quantum Dots: The importance of Z-type ligand passivation[J]. Journal of the American Chemical Society, 2018, 140(46): 15712−15723. doi: 10.1021/jacs.8b07783

    CrossRef Google Scholar

    [60] Roghabadi F A, Aghmiuni K O, Ahmadi V, et al. Optical and electrical simulation of hybrid solar cell based on conjugated polymer and size-tunable CdSe quantum dots: Influence of the QDs size[J]. Organic Electronics, 2016, 34: 164−171. doi: 10.1016/j.orgel.2016.04.013

    CrossRef Google Scholar

    [61] Drummen G. Fluorescent probes and fluorescence (microscopy) techniques—Illuminating biological and biomedical research[J]. Molecules, 2012, 17(12): 14067−14090. doi: 10.3390/molecules171214067

    CrossRef Google Scholar

    [62] Zhang L, Li P, Feng L, et al. Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury(Ⅱ)[J]. Journal of Hazardous Materials, 2020, 387: 121715. doi: 10.1016/j.jhazmat.2019.121715

    CrossRef Google Scholar

    [63] Patir K, Gogoi S K. Facile synthesis of photoluminescent graphitic carbon nitride quantum dots for Hg2+ detection and room temperature phosphorescence[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(2): 1732−1743. doi: 10.1021/acssuschemeng.7b03008

    CrossRef Google Scholar

    [64] Razavi S A A, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coordination Chemistry Reviews, 2020, 415: 213299. doi: 10.1016/j.ccr.2020.213299

    CrossRef Google Scholar

    [65] Wu T, Gao X J, Ge F, et al. Metal–organic frameworks (MOFs) as fluorescence sensors: Principles, development and prospects[J]. CrystEngComm, 2022, 24(45): 7881−7901. doi: 10.1039/d2ce01159j

    CrossRef Google Scholar

    [66] Wu S, Min H, Shi W, et al. Multicenter metal-organic framework-based ratiometric fluorescent sensors[J]. Advanced Materials, 2019, 32(3): 1805871. doi: 10.1002/adma.201805871

    CrossRef Google Scholar

    [67] Zhang D S, Gao Q, Chang Z, et al. Rational construction of highly tunable donor–acceptor materials based on a crystalline host–guest platform[J]. Advanced Materials, 2018, 30(50): 1804715. doi: 10.1002/adma.201804715

    CrossRef Google Scholar

    [68] Wang Q, Ke W, Lou H, et al. A novel fluorescent metal-organic framework based on porphyrin and AIE for ultra-high sensitivity and selectivity detection of Pb2+ ions in aqueous solution[J]. Dyes and Pigments, 2021, 196: 109802. doi: 10.1016/j.dyepig.2021.109802

    CrossRef Google Scholar

    [69] Samanta P, Desai A V, Sharma S, et al. Selective recognition of Hg2+ ion in water by a functionalized metal–organic framework (MOF) based chemodosimeter[J]. Inorganic Chemistry, 2018, 57(5): 2360−2364. doi: 10.1021/acs.inorgchem.7b02426

    CrossRef Google Scholar

    [70] 汪宝堆, 常新月, 张华, 等. 一种超灵敏检测水中Cr(Ⅵ)离子敏感膜及其制备方法: CN202111157635.9[P]. 2021-09-30.

    Google Scholar

    [71] Long X T, liu F, Zhou X, et al. Estimation of spatial distribution and health risk by arsenic and heavy metals in shallow groundwater around Dongting Lake Plain using GIS mapping[J]. Chemosphere, 2020, 269: 128698. doi: 10.1016/j.chemosphere.2020.128698

    CrossRef Google Scholar

    [72] Dong L, Zhang J, Guo Z, et al. Distributions and interactions of dissolved organic matter and heavy metals in shallow groundwater in Guanzhong Basin of China[J]. Environmental Research, 2022, 207: 112099. doi: 10.1016/j.envres.2021.112099

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(693) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint