Citation: | LUO Tao, WANG Hanlin, ZHU Songbai, QING Liyuan, HU Zhaochu. Impacts of Common Lead on Apatite U-Pb Geochronology by LA-ICP-MS: Assessment and Correction Strategies[J]. Rock and Mineral Analysis, 2025, 44(1): 51-62. doi: 10.15898/j.ykcs.202404070079 |
Apatite is a widespread U-bearing mineral in igneous, metamorphic, and sedimentary rocks. U-Pb geochronology of apatite can provide significant information for constraining magmatic evolution processes and tracing provenance. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a crucial technique for in situ U-Pb age analysis of apatite. However, the lack of suitable matrix-matched apatite reference materials and the inevitable presence of common lead in reference materials are major obstacles restricting high-precision determination of apatite U-Pb ages. This study investigates the impact of common lead on LA-ICP-MS apatite U-Pb dating results. The significant systematic biases (6%−30%) in both measured lower intercept ages and initial lead compositions are observed when calibrating against MAD apatite without common lead correction. However, accurate apatite U-Pb ages (within 2% systematic bias) can be obtained by correcting for common lead in MAD using the 207Pb method or Tera-Wasserburg plot method prior to Pb/U fractionation calibration. Furthermore, a vapor-assisted laser ablation method is employed in conjunction with NIST612 glass as an external standard to accurately analyze apatite U-Pb ages. This non-matrix matched method eliminates the need to consider the influence of common lead in the reference materials. Novel high-precision LA-ICP-MS apatite U-Pb dating methods are established with both matrix-matched and non-matrix-matched analyses, which greatly promote the application of apatite U-Pb geochronology in Earth science. The BRIEF REPORT is available for this paper at
[1] | Abdullin F, Solé J, Solari L, et al. Single-grain apatite geochemistry of Permian–Triassic granitoids and Mesozoic and Eocene sandstones from Chiapas, Southeast Mexico: Implications for sediment provenance[J]. International Geology Review, 2016, 58(9): 1132−1157. doi: 10.1080/00206814.2016.1150212 |
[2] | Krestianinov E, Amelin Y, Neymark L A, et al. U-Pb systematics of uranium-rich apatite from adirondacks: Inferences about regional geological and geochemical evolution, and evaluation of apatite reference materials for in situ dating[J]. Chemical Geology, 2021, 581: 120417. doi: 10.1016/j.chemgeo.2021.120417 |
[3] | Li Q L, Li X H, Wu F Y, et al. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb[J]. Gondwana Research, 2012, 21(4): 745−756. doi: 10.1016/j.gr.2011.07.008 |
[4] | 罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物 U-Th-Pb 定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144. Luo T, Hu Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma mass spectrometry[J]. Earth Science, 2022, 47(11): 4122−4144. |
[5] | Pochon A, Poujol M, Gloaguen E, et al. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian—Carboniferous boundary in the Armorican Massif (France)[J]. American Mineralogist, 2016, 101(11): 2430−2442. doi: 10.2138/am-2016-5736 |
[6] | Morrison J L, Kirkland C L, Fiorentini M, et al. An apatite to unravel petrogenic processes of the Nova-Bollinger Ni-Cu magmatic sulfide deposit, Western Australia[J]. Precambrian Research, 2022, 369: 106524. doi: 10.1016/j.precamres.2021.106524 |
[7] | Rochín-Bañaga H, Davis D W, Schwennicke T. First U-Pb dating of fossilized soft tissue using a new approach to paleontological chronometry[J]. Geology, 2021, 49(9): 1027−1031. doi: 10.1130/G48386.1 |
[8] | Rochín-Bañaga H, Davis D W. Insights into U-Th-Pb mobility during diagenesis from laser ablation U-Pb dating of apatite fossils[J]. Chemical Geology, 2023, 618: 121290. doi: 10.1016/j.chemgeo.2022.121290 |
[9] | 罗涛, 卿丽媛, 刘金雨, 等. 激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成[J]. 岩矿测试, 2023, 42(5): 996−1006. Luo T, Qing L Y, Liu J Y, et al. Accurate determination of elemental contents in carbonate minerals with laser ablation inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2023, 42(5): 996−1006. |
[10] | Lv N, Bao Z A, Chen K Y, et al. Accurate determination of Cu isotopes in bronze by fsLA-MC-ICP-MS[J]. Atomic Spectroscopy, 2023, 44(6): 418−426. doi: 10.46770/AS.2023.282 |
[11] | Liu H, Feng Y, Li M, et al. Further characterization of four natural ilmenite reference materials for in situ Fe isotopic analysis[J]. Atomic Spectroscopy, 2023, 44(6): 409−417. doi: 10.46770/AS.2023.281 |
[12] | Chew D M, Sylvester P J, Tubrett M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1−2): 200−216. doi: 10.1016/j.chemgeo.2010.11.010 |
[13] | Luo T, Hu Z, Zhang W, et al. Water vapor-assisted “universal” nonmatrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2018, 90(15): 9016−9024. doi: 10.1021/acs.analchem.8b01231 |
[14] | Zhang W, Zhao S, Sun J, et al. Late Mesozoic tectono-thermal history in the south margin of Great Xing’an Range, NE China: Insights from zircon and apatite (U-Th)/He ages[J]. Journal of Earth Science, 2022, 33(1): 36−44. doi: 10.1007/s12583-021-1537-5 |
[15] | Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals, 2021, 11(10): 1095. doi: 10.3390/min11101095 |
[16] | Apen F E, Wall C J, Cottle J M, et al. Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry[J]. Chemical Geology, 2022, 590: 120689. doi: 10.1016/j.chemgeo.2021.120689 |
[17] | Duan L J, Zhang L L, Zhu D C, et al. Apatite MAP-3: A new homogeneous and low common lead natural reference for laser in situ U-Pb dating and Nd isotope analysis[J]. Journal of Analytical Atomic Spectrometry, 2023, 38(7): 1478−1493. doi: 10.1039/D2JA00405D |
[18] | Abdullin F, Solari L, Solé J, et al. On LA-ICP-MS U-Pb dating of unetched and etched apatites[J]. Geochronology, 2020, 2020: 1−23. |
[19] | Lana C, Gonçalves G O, Mazoz A, et al. Assessing the U-Pb, Sm‐Nd and Sr‐Sr isotopic compositions of the Sumé apatite as a reference material for LA‐ICP‐MS analysis[J]. Geostandards Geoanalytical Research, 2022, 46(1): 71−95. doi: 10.1111/ggr.12413 |
[20] | Thomson S N, Gehrels G E, Ruiz J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): 1−23. |
[21] | Chew D, Petrus J, Kamber B. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 2014, 363: 185−199. doi: 10.1016/j.chemgeo.2013.11.006 |
[22] | Storey C, Smith M, Jeffries T. In situ LA-ICP-MS U-Pb dating of Metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains[J]. Chemical Geology, 2007, 240(1−2): 163−181. doi: 10.1016/j.chemgeo.2007.02.004 |
[23] | Hou Z, Xiao Y, Shen J, et al. In situ rutile U-Pb dating based on zircon calibration using LA-ICP-MS, geological applications in the Dabie Orogen, China[J]. Journal of Asian Earth Sciences, 2020, 192: 104261. doi: 10.1016/j.jseaes.2020.104261 |
[24] | Luo T, Zhao H, Zhang W, et al. Non-matrix-matched analysis of U-Th-Pb geochronology of Bastnäsite by laser ablation inductively coupled plasma mass spectrometry[J]. Science China: Earth Sciences, 2021, 64(4): 667−676. doi: 10.1007/s11430-020-9715-1 |
[25] | Luo T, Deng X, Li J, et al. U-Pb geochronology of wolframite by laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1439−1446. doi: 10.1039/C9JA00139E |
[26] | Paul A N, Spikings R A, Chew D, et al. The effect of intra-crystal uranium zonation on apatite U-Pb thermo-chronology: A combined ID-TIMS and LA-MC-ICP-MS study[J]. Geochimica et Cosmochimica Acta, 2019, 251: 15−35. doi: 10.1016/j.gca.2019.02.013 |
[27] | McDowell F W, McIntosh W C, Farley K A. A precise 40Ar-39Ar reference age for the durango apatite (U-Th)/He and fission-track dating standard[J]. Chemical Geology, 2005, 214(3−4): 249−263. doi: 10.1016/j.chemgeo.2004.10.002 |
[28] | Thompson J, Meffre S, Maas R, et al. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(6): 1206−1215. doi: 10.1039/C6JA00048G |
[29] | Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM610−617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x |
[30] | Mcfarlane C R M. Allanite U-Pb geochronology by 193nm LA-ICP-MS using NIST610 glass for external calibration[J]. Chemical Geology, 2016, 438: 91−102. doi: 10.1016/j.chemgeo.2016.05.026 |
[31] | Miyajima Y, Saito A, Kagi H, et al. Incorporation of U, Pb and rare earth elements in calcite through crystallisation from amorphous calcium carbonate: Simple preparation of reference materials for microanalysis[J]. Geostandards Geoanalytical Research, 2021, 45(1): 189−205. doi: 10.1111/ggr.12367 |
[32] | Roberts N M, Rasbury E T, Parrish R R, et al. A calcite reference material for LA‐ICP‐MS U‐Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807−2814. doi: 10.1002/2016GC006784 |
[33] | Paton C, Woodhead J D, Hellstrom J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q0AA06. |
[34] | Vermeesch P. Isoplot R: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479−1493. doi: 10.1016/j.gsf.2018.04.001 |
[35] | Stacey J, Kramers J. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207−221. doi: 10.1016/0012-821X(75)90088-6 |
[36] | Schaltegger U, Schmitt A, Horstwood M. U‐Th‐Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities[J]. Chemical Geology, 2015, 402: 89−110. doi: 10.1016/j.chemgeo.2015.02.028 |
[37] | 赵令浩, 詹秀春, 曾令森, 等. 磷灰石LA-ICP-MS U-Pb定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753. Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753. |
The precision of 206Pb/238U and 207Pb/206Pb ages varing with Pb signal intensity: (a) 206Pb/238U age; (b) 207Pb/206Pb age.
U-Pb ages results obtained by calibrating with apatite MAD as the external standard: (a) Apatite Otter Lake, without anchored initial Pb isotopic composition; (b) Apatite Otter Lake, with anchored initial Pb isotopic composition; (c) Apatite Durango, without anchored initial Pb isotopic composition; (d) Apatite Durango, with anchored initial Pb isotopic composition.
U-Pb age results obtained after prior correction for common Pb in MAD with 207Pb method: (a) Apatite Otter Lake, without anchored initial Pb isotopic composition; (b) Apatite Otter Lake, with anchored initial Pb isotopic composition; (c) Apatite Durango, without anchored initial Pb isotopic composition; (d) Apatite Durango, with anchored initial Pb isotopic composition.
U-Pb ages of apatite obtained by Tera-Wasserburg concordia correction method: (a) MAD; (b) Otter Lake; (c) Durango.
U-Pb ages of apatite obtained by using NIST612 glass as the external standard: (a) MAD; (b) Otter Lake; (c) Durango.