Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 3
Article Contents

WANG Lei, YU Tingting, SUN Hongbin, ZHANG Baoke. Boron Analysis in Boron Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Sealed Acid Digestion at High Pressure[J]. Rock and Mineral Analysis, 2024, 43(3): 468-475. doi: 10.15898/j.ykcs.202308070131
Citation: WANG Lei, YU Tingting, SUN Hongbin, ZHANG Baoke. Boron Analysis in Boron Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Sealed Acid Digestion at High Pressure[J]. Rock and Mineral Analysis, 2024, 43(3): 468-475. doi: 10.15898/j.ykcs.202308070131

Boron Analysis in Boron Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Sealed Acid Digestion at High Pressure

More Information
  • The literature provides reference for the accurate determination of boron by inductively coupled plasma-optical emission spectrometry (ICP-OES), but most of the studies are conducted on the standard substances of soil and stream sediment. In addition, the range of boron content is low, and the methods for the determination of high boron content in boron ores are few. A method of ICP-OES with sealed acid digestion at high pressure was developed for the determination of boron content in boron ores. Using nitric acid and hydrofluoric acid as reagents, the samples of boron ores were dissolved at high temperature and high pressure without acid drive, and ICP-OES equipped with a hydrofluoric acid-resistant sampling system was used to determine boron. The samples of boromagnesite, ludwigite, chambersite and salt lake type solid boron ore were taken as the research objects. The relative standard deviation (RSD, n=11) was 0.39%−2.66%, the detection limit of the method was 1.76g/g, and the determination range was 5.87g/g−10.8%. The measured values were consistent with the certified values after the verification of the reference materials. Compared with volumetric method and microwave digestion method, the results were in good agreement. This method does not require evaporating the sample solution, which solves the boron volatile loss problem. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202308070131.

  • 加载中
  • [1] 《岩石矿物分析》编委会. 岩石矿物分析(第四版 第二分册)[M]. 北京: 地质出版社, 2011: 376−396.

    Google Scholar

    The editorial committee of “Rock and Mineral Analysis”. Rock and Mineral Analysis (The 4th edition, Volume Ⅱ) [M]. Beijing: Geological Publishing House, 2011: 376−396.

    Google Scholar

    [2] 于微. 分光光度法测定水系沉积物中硼[J]. 吉林地质, 2014, 33(4): 61−63. doi: 10.3969/j.issn.1001-2427.2014.04.014

    CrossRef Google Scholar

    Yu W. Determination of boron in stream sediments by spectrophotometric method[J]. Jilin Geology, 2014, 33(4): 61−63. doi: 10.3969/j.issn.1001-2427.2014.04.014

    CrossRef Google Scholar

    [3] 邢书才, 杨永, 岳亚萍. 姜黄素分光光度法测定水中硼的优化检测条件研究[J]. 中国测试, 2019, 45(6): 65−69.

    Google Scholar

    Xing S C, Yang Y, Yue Y P. Study on the optimizing conditions for determining boron in water by curcumin spectrophotometry[J]. China Measurement & Test, 2019, 45(6): 65−69.

    Google Scholar

    [4] 赵志刚, 韦雪梅, 赵华丽. 高氯酸消解电位滴定法测定硼粉纯度[J]. 化学分析计量, 2022, 31(6): 46−49. doi: 10.3969/j.issn.1008-6145.2022.06.011

    CrossRef Google Scholar

    Zhao Z G, Wei X M, Zhao H L. Determination of the purity of boron powder by potentiometric titration after sample digested by perchloric[J]. Chemical Analysis and Meterage, 2022, 31(6): 46−49. doi: 10.3969/j.issn.1008-6145.2022.06.011

    CrossRef Google Scholar

    [5] 王顺祥, 龚仓, 吴少青, 等. 固体进样-CCD光电直读发射光谱法测定地球化学样品中微量银、硼和锡[J]. 中国无机分析化学, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012

    CrossRef Google Scholar

    Wang S X, Gong C, Wu S Q, et al. Determination of trace silver, boron and tin in geochemical samples by CCD optical direct-reading emission spectrometer with solid injection[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012

    CrossRef Google Scholar

    [6] 张元, 王文东, 卢兵, 等. 碱熔-阳离子交换树脂分离ICP-MS法测定厚覆盖区地球化学调查样品中硼锗溴钼锡碘钨[J]. 岩矿测试, 2022, 41(1): 99−108.

    Google Scholar

    Zhang Y, Wang W D, Lu B, et al. Determination of boron, germanium, bromine, molybdenum, tin, iodine and tungsten in geochemical survey sample by ICP-MS with alkali fusion-cation exchange resin separation[J]. Rock and Mineral Analysis, 2022, 41(1): 99−108.

    Google Scholar

    [7] Manousi N, Kabir A, Furton K G, et al. Dual lab-in-syringe flow-batch platform for automatic fabric disk sorptive extraction/back-extraction as a front end to inductively coupled plasma atomic emission spectrometry[J]. Analytical Chemistry, 2022, 94(38): 12943−12947. doi: 10.1021/acs.analchem.2c02268

    CrossRef Google Scholar

    [8] Vievard J, Amoikon T L, Coulibaly N A, et al. Extraction and quantification of pesticides and metals in palm wines by HS-SPME/GC–MS and ICP-AES/MS[J]. Food Chemistry, 2022, 393: 133352. doi: 10.1016/j.foodchem.2022.133352

    CrossRef Google Scholar

    [9] Zeng Y, Yokoyama Y, Hirabayashi S, et al. A rapid and precise method of establishing age model for coral skeletal radiocarbon to study surface oceanography using coupled X-ray photos and ICP-AES measurement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2022, 533: 23−28.

    Google Scholar

    [10] Erickson B. Product review: ICP-AES remains competitive[J]. Analytical Chemistry, 1998, 70(5): 211A−215A. doi: 10.1021/ac9817725

    CrossRef Google Scholar

    [11] 刘向磊, 孙文军, 任彧仲, 等. 微波消解 混合模式电感耦合等离子体质谱法测定土壤或沉积物中银、锡、硼[J]. 质谱学报, 2022, 43(4): 522−532. doi: 10.7538/zpxb.2021.0205

    CrossRef Google Scholar

    Liu X L, Sun W J, Ren Y Z, et al. Determination of sliver, tin and boron in soil or sediment sample with microwave digestion by mixed mode inductive coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(4): 522−532. doi: 10.7538/zpxb.2021.0205

    CrossRef Google Scholar

    [12] 刘跃, 王记鲁, 李静, 等. 高压密闭消解-电感耦合等离子体质谱(ICP-MS)法测定土壤背景点样品中的29种元素[J]. 中国无机分析化学, 2023, 13(2): 136−142.

    Google Scholar

    Liu Y, Wang J L, Li J, et al. Determination of 29 elements in soil background site samples by inductively coupled plasma mass spectrometry with high pressure closed digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(2): 136−142.

    Google Scholar

    [13] 赵庆令, 李清彩, 蒲军, 等. 电感耦合等离子体发射光谱法同时测定土壤样品中砷硼铈碘铌硫钪锶钍锆等 31种元素[J]. 岩矿测试, 2010, 29(4): 455−457.

    Google Scholar

    Zhao Q L, Li Q C, Pu J, et al. Simultaneous determination of 31 elements in soil samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2010, 29(4): 455−457.

    Google Scholar

    [14] 杜宝华, 盛迪波, 王日中, 等. 电感耦合等离子体发射光谱(ICP-OES)法测定含硼聚乙烯核屏蔽材料中的硼[J]. 中国无机分析化学, 2023, 13(3): 274−277. doi: 10.3969/j.issn.2095-1035.2023.03.012

    CrossRef Google Scholar

    Du B H, Sheng D B, Wang R Z, et al. Determination of boron content in boron-containing polyethylene nuclear shielding materials by ICP-OES[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(3): 274−277. doi: 10.3969/j.issn.2095-1035.2023.03.012

    CrossRef Google Scholar

    [15] 方宏树, 孔晓彦, 胡兰基. ICP-OES法测定盐湖土壤中锂和硼的方法研究[J]. 当代化工, 2023, 52(1): 248−252.

    Google Scholar

    Fang H S, Kong X Y, Hu L J. Study on the determination method of lithium and boron in salt lake soil by ICP-OES[J]. Contemporary Chemical Industry, 2023, 52(1): 248−252.

    Google Scholar

    [16] 黄合生, 邢文青, 黄波, 等. ICP-AES法测定凝渣剂中铝和硼元素含量[J]. 南方金属, 2023, 250: 19−23.

    Google Scholar

    Huang H S, Xing W B, Huang B, et al. Determination of aluminum and boron in slag coagulant by inductively coupled plasma[J]. South Metals, 2023, 250: 19−23.

    Google Scholar

    [17] 李冰, 马新荣, 杨红霞, 等. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫[J]. 岩矿测试, 2003, 22(4): 241−247. doi: 10.3969/j.issn.0254-5357.2003.04.001

    CrossRef Google Scholar

    Li B, Ma X R, Yang H X, et al. Determination of boron, arsenic and sulfur in geological samples by inductively coupled plasma atomic emission spectrometry with sample treatment by pressurized decomposition[J]. Rock and Mineral Analysis, 2003, 22(4): 241−247. doi: 10.3969/j.issn.0254-5357.2003.04.001

    CrossRef Google Scholar

    [18] Zarcinas B A, Cartwright B. Acid dissolution of soils and rocks for the determination of boron inductively coupled plasma atomic emission spectrometry[J]. Analyst, 1987, 112(8): 1107−1112. doi: 10.1039/an9871201107

    CrossRef Google Scholar

    [19] 方宏树, 何媛媛, 鲁海妍. 过氧化钠熔融ICP-OES法试测定地矿样品中的硼[J]. 化学工程师, 2023(1): 24−28.

    Google Scholar

    Fang H S, He Y Y, Lu H Y. Determination of boron in geological and mineral samples by sodium peroxide melting ICP-OES[J]. Chemical Engineer, 2023(1): 24−28.

    Google Scholar

    [20] 易田芳, 向勇, 蒋建军, 等. 四酸微波消解-电感耦合等离子体发射光谱(ICP-OES)法测定土壤和沉积物中全硼含量[J]. 中国无机分析化学, 2023, 13(6): 576−581. doi: 10.3969/j.issn.2095-1035.2023.06.010

    CrossRef Google Scholar

    Yi T F, Xiang Y, Jiang J J, et al. Determination of total boron in soil and deposit by inductively coupled plasma optical emission spectroscopy with four acids-microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 576−581. doi: 10.3969/j.issn.2095-1035.2023.06.010

    CrossRef Google Scholar

    [21] 《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2012.

    Google Scholar

    [22] 肖凡, 张宁, 姜云军, 等. 密闭酸溶-电感耦合等离子体原子发射光谱法测定地球化学调查样品中硼[J]. 冶金分析, 2018, 38(6): 50−54.

    Google Scholar

    Xiao F, Zhang N, Jiang Y J, et al. Determination of boron in geochemical survey sample by inductively coupled plasma atomic emission spectrometry after acid dissolution in closed system[J]. Metallurgical Analysis, 2018, 38(6): 50−54.

    Google Scholar

    [23] 王蕾, 张保科, 马生凤, 等. 封闭压力酸溶-电感耦合等离子体光谱法测定钨矿石中的钨[J]. 岩矿测试, 2014, 33(5): 661−664. doi: 10.3969/j.issn.0254-5357.2014.05.008

    CrossRef Google Scholar

    Wang L, Zhang B K, Ma S F, et al. Determination of wolfram in tungsten ore by pressurized acid digestion-inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 661−664. doi: 10.3969/j.issn.0254-5357.2014.05.008

    CrossRef Google Scholar

    [24] 叶家瑜, 江宝林. 区域地球化学勘查样品分析方法[M]. 北京: 地质出版社, 2004: 226-227.

    Google Scholar

    [25] 金佳旭, 郑旭, 付彦吉, 等. 不同酸液作用下牛蹄塘组页岩孔隙结构演化特征试验研究[J]. 工程地质学报, 2021, 29(3): 891−900.

    Google Scholar

    Jin J X, Zhen X, Fu Y J, et al. Experimental study of acidization impact to pore topological structure variation of Niutitang shale[J]. Journal of Engineering Geology, 2021, 29(3): 891−900.

    Google Scholar

    [26] 印万忠. 氢氟酸在硅酸盐矿物浮选中的作用机制[J]. 黄金学报, 1999, 1(4): 271−274.

    Google Scholar

    Yin W Z. Effect mechanism of hydrofluoric acid in flotation of silicate minerals[J]. Gold Journal, 1999, 1(4): 271−274.

    Google Scholar

    [27] 杨林, 邹国庆, 周武权, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定稀有多金属矿中锂铍铌钽铷铯[J]. 中国无机分析化学, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    CrossRef Google Scholar

    Yang L, Zou G Q, Zhou W Q, et al. Determination of Li, Be, Nb, Ta, Rb, Cs in rare polymetallic ores by inductively coupled plasma mass spectrometry (ICP-MS) with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    CrossRef Google Scholar

    [28] 朱健, 马程程, 赵磊, 等. 高压密闭消解-电感耦合等离子体质谱法测定煤中17种金属元素[J]. 理化检验(化学分册), 2014, 50(8): 960−963.

    Google Scholar

    Zhu J, Ma C C, Zhao L, et al. ICP-MS determination of 17 metal elements in coal with high-pressure closed digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(8): 960−963.

    Google Scholar

    [29] 马亮帮, 张大勇, 腾格尔, 等. 高压密闭消解-电感耦合等离子体质谱(ICP-MS)法测定煤中稀土元素[J]. 中国无机分析化学, 2019, 9(4): 27−30.

    Google Scholar

    Ma L B, Zhang D Y, Tenger, et al. Determination of rare earth elements in coal by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 27−30.

    Google Scholar

    [30] 李迎春, 周伟, 王健, 等. X射线荧光光谱法测定高锶高钡的硅酸盐样品中主量元素[J]. 岩矿测试, 2013, 32(2): 249−253.

    Google Scholar

    Li Y C, Zhou W, Wang J, et al. Determination of major elements in silicate samples with high content strontium and barium by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2013, 32(2): 249−253.

    Google Scholar

    [31] 李迎春, 张磊, 周伟, 等. 熔融制样-波长色散和能量色散X射线荧光光谱仪应用于硅酸盐类矿物及疑难样品分析[J]. 岩矿测试, 2020, 39(6): 828−838.

    Google Scholar

    Li Y C, Zhang L, Zhou W, et al. Determination of major and minor elements in rock, soils and sediments and complex samples by wavelength and energy dispersive X-ray fluorescence Spectrometry with fusion sampling[J]. Rock and Mineral Analysis, 2020, 39(6): 828−838.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(5)

Article Metrics

Article views(38) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint