Citation: | PAN Qianni, LIU Wei, HE Yushan, YANG Guoyun. Determination of Silver in Regional Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Mixed Acids Digestion[J]. Rock and Mineral Analysis, 2024, 43(3): 459-467. doi: 10.15898/j.ykcs.202211210221 |
There exists much error during determination of trace silver in geochemical samples by traditional inductively coupled plasma-mass spectrometry (ICP-MS) due to the interference of zirconium (Zr) and niobium (Nb) oxides. To eliminate the disturbance, a simple and accurate method combining mixed acid digestion and ICP-MS was built, in which the effect of He flow rate under kinetic energy discrimination (KED) mode was also investigated. Specifically, the samples were firstly digested by mixed nitric-hydrofluoric-perchloric acids. Then, the internal standard 103Rh was added into the test sample after nitrohydrochloric acid extraction to correct matrix interference and instrument signal drift. To further eliminate the interference of Zr and Nb oxides on Ag, the He flow of the collision pool was increased to 7.0mL/min, thus significantly reducing the mass spectrum interference of silver without deterioration of the signal-background ratio. Verified by national first grade reference materials, the analysis results were within the allowable range of the standard value. The detection limit (3SD) of the method was 0.005g/g with the relative standard deviation of 1.43%−11.22% (n=12). This method is suitable for the analysis of silver in regional geochemical samples such as soil, stream sediments and rocks.
[1] | 邹雯雯, 岳春雷, 赵祖亮, 等. 微波消解-火焰原子吸收光谱法测定铜精矿中银[J]. 冶金分析, 2018, 38(9): 59−62. Zhou W W, Yue C L, Zhao Z L, et al. Determination of silver in copper concentrate by microwave digestion-flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 59−62. |
[2] | 李静. 火焰原子吸收光谱法测定铜锍中银[J]. 黄金, 2017, 38(3): 83−85. doi: 10.11792/hj20170320 Li J. Determination of silver in copper matte by flame atomic absorption spectrometry[J]. Gold, 2017, 38(3): 83−85. doi: 10.11792/hj20170320 |
[3] | Chun G Y, Ping L, Yang Y Z. Determination of trace silver in environmental samples by room temperature ionic liquid-based preconcentration and flame atomic absorption spectrometry[J]. Microchim Acta, 2011, 175: 333−339. doi: 10.1007/s00604-011-0677-1 |
[4] | 苏丹, 刘向东, 张凯歌. 石墨炉原子吸收法测定地质样品中痕量银[J]. 黄金, 2015, 36(10): 85−88. doi: 10.11792/hj201510020 Su D, Liu X D, Zhang K G. Determination of trace silver in geological samples by graphite furnace atomic absorption spectrometry[J]. Gold, 2015, 36(10): 85−88. doi: 10.11792/hj201510020 |
[5] | 黎红波, 朱言, 张代云, 等. 石墨炉原子吸收光谱法连续测定土壤中银和镉[J]. 云南地质, 2019, 38(3): 381−386. doi: 10.3969/j.issn.1004-1885.2019.03.023 Li H B, Zhu Y, Zhang D Y, et al. Continuous determination of Ag and cadmium in soil by graphite furnace atomic absorption spectrometry[J]. Yunnan Geology, 2019, 38(3): 381−386. doi: 10.3969/j.issn.1004-1885.2019.03.023 |
[6] | Pei L, Li L P. Determination of silver(Ⅰ) ion in water samples by graphite furnace atomic absorption spectrometry after preconcentration with dispersive liquid-liquid microextraction[J]. Microchim Acta, 2010, 168: 45−50. doi: 10.1007/s00604-009-0253-0 |
[7] | 李小辉, 孙慧莹, 于亚辉, 等. 交流电弧发射光谱法测定地球化学样品中银锡硼[J]. 冶金分析, 2017, 37(4): 16−21. Li X H, Sun H Y, Yu Y H, et al. Determination of silver, tin and boron in geochemical sample by alternating current (AC) arc emission spectrometry[J]. Metallurgical Analysis, 2017, 37(4): 16−21. |
[8] | 黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555−565. Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555−565. |
[9] | 王顺祥, 龚仓, 吴少青, 等. 固体进样-CCD光电直读发射光谱法测定地球化学样品中微量银、硼和锡[J]. 中国无机分析化学, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012 Wang S X, Gong C, Wu S Q, et al. Determination of trace sliver, boron and tin in geochemical samples by CCD optical direct-reading emission spectrometer with solid injection[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012 |
[10] | Hong L, Rui B J, Xiao D X, et al. Single particle ICP-MS combined with filtration membrane for accurate determination of silver nanoparticles in the real aqueous environment[J]. Analytical Sciences, 2023, 39: 1349−1359. doi: 10.1007/s44211-023-00347-z |
[11] | Stefania G, Chiara G, Maria B, et al. The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP-MS and INAA measurement results[J]. Accreditation and Quality Assurance, 2007, 12: 84−93. doi: 10.1007/s00769-006-0238-1 |
[12] | Zhong X L, Li P Z, Feng T. Influence of sample pre-treatment on the determination of trace silver and cadmium in geological and environmental samples by quadrupole inductively coupled plasma mass spectrometry[J]. Microchim Acta, 2007, 156: 263−269. |
[13] | 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 140−142. Chi Q H, Yan M C. Handbook of Elemental Abundance for Applied Geochemistry [M]. Beijing: Geological Publishing House, 2007: 140−142. |
[14] | 张金, 李鹰, 李剑. 碰撞反应池-电感耦合等离子体质谱(ICP-MS)法测定三氧化钨中钠钾铜砷钼锑磷硫[J]. 中国无机分析化学, 2023, 13(10): 1113−1117. doi: 10.3969/j.issn.2095-1035.2023.10.010 Zhang J, Li Y, Li J. Determination of sodium, potassium, copper, arsenic, molybdenum, antimony, phosphorus and sulfur in tungsten trioxide by inductivity coupled plasma mass spectrometry with collision reaction cell[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(10): 1113−1117. doi: 10.3969/j.issn.2095-1035.2023.10.010 |
[15] | 白金峰, 刘彬, 张勤, 等. 碰撞池-电感耦合等离子体质谱法测定地球化学样品中钒和铬[J]. 冶金分析, 2009, 29(6): 17−22. doi: 10.3969/j.issn.1000-7571.2009.06.003 Bai J F, Liu B, Zhang Q, et al. Determination of vanadium and chromium in geochemical samples by inductively coupled plasma mass spectrometry with collision cell technology[J]. Metallurgical Analysis, 2009, 29(6): 17−22. doi: 10.3969/j.issn.1000-7571.2009.06.003 |
[16] | 刘跃, 林冬, 王记鲁, 等. 四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银[J]. 岩矿测试, 2022, 41(6): 1017−1028. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206013 Liu Y, Lin D, Wang J L, et al. Determination of silver in soil and stream sediments by ICP-MS/MS with four collision/reaction modes[J]. Rock and Mineral Analysis, 2022, 41(6): 1017−1028. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206013 |
[17] | 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394−402. Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394−402. |
[18] | 王岚, 杨丽芳, 谭西早, 等. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉[J]. 岩矿测试, 2017, 36(6): 574−580. Wang L, Yang L F, Tan X Z, et al. Determination of Cd in environmental geological samples by inductively coupled plasma-mass spectrometry with membrane desolvation[J]. Rock and Mineral Analysis, 2017, 36(6): 574−580. |
[19] | 王妃, 王德淑, 汤德能. 浅析锡对电感耦合等离子体质谱法测定镉的干扰[J]. 中国无机分析化学, 2015, 5(2): 12−18. doi: 10.3969/j.issn.2095-1035.2015.02.003 Wang F, Wang D S, Tang D N. The interference of tin on the determination of cadmium by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2): 12−18. doi: 10.3969/j.issn.2095-1035.2015.02.003 |
[20] | 禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77−84. Yu L L, Guo B, Liu Z, et al. Determination of low-content cadmium in Sn-rich geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77−84. |
[21] | 邢智, 漆亮. P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银[J]. 岩矿测试, 2013, 32(3): 398−401. doi: 10.3969/j.issn.0254-5357.2013.03.007 Xing Z, Qi L. Separation with P507 levextrel resin for rapid determination of Ag in geochemical exploration samples by ICP-MS[J]. Rock and Mineral Analysis, 2013, 32(3): 398−401. doi: 10.3969/j.issn.0254-5357.2013.03.007 |
[22] | 刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650−658. Liu T T, Qian Y D, Huang D L. Determination of trace silver in geochemical samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650−658. |
[23] | 孙朝阳, 戴雪峰, 代小吕, 等. 氨水分离-电感耦合等离子体质谱法测定化探样品中的银[J]. 岩矿测试, 2015, 34(3): 292−296. Sun C Y, Dai X F, Dai X L, et al. Determination of silver in samples for geochemical exploration by inductively coupled plasma-mass spectrometry after ammonia complexation[J]. Rock and Mineral Analysis, 2015, 34(3): 292−296. |
[24] | 刘海明, 武明丽, 成景特. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444−450. Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444−450. |
[25] | 李晓云, 王羽, 金婵, 等. 微波消解-高分辨电感耦合等离子体质谱法测定土壤中 8 种金属元素[J]. 岩矿测试, 2022, 41(3): 374−383. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203004 Li X Y, Wang Y, Jin C, et al. Determination of 8 metal elements in soil by high-resolution inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(3): 374−383. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203004 |
[26] | 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348. Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348. |
[27] | 张志喜, 黄惠琴. 电感耦合等离子体质谱法测定地球化学样品中的银、砷、锑、铋[J]. 中国无机分析化学, 2014, 4(1): 46−49. doi: 10.3969/j.issn.2095-1035.2014.01.012 Zhang Z X, Huang H Q. Determination of silver, arsenic, antimony and bismuth in geochemical samples using inductively coupled plasma mass spectrometry together with aqua regia decomposition[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 46−49. doi: 10.3969/j.issn.2095-1035.2014.01.012 |
[28] | 杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58−64. Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58−64. |
[29] | 刘彤彤, 黄登丽. 王水溶样-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 冶金分析, 2017, 41(7): 61−66. Liu T T, Huang D L. Determination of trace silver in geochemical samples by inductively coupled plasma mass spectrometry after sample dissolution with aqua regia[J]. Metallurgical Analysis, 2017, 41(7): 61−66. |
[30] | 张宇婷, 孙丰月, 李予晋, 等. 王水提取-在线氩气稀释-电感耦合等离子体质谱(ICP-MS)法测定地质样品中的银[J]. 中国无机分析化学, 2023, 13(3): 249−255. doi: 10.3969/j.issn.2095-1035.2023.03.008 Zhang Y T, Sun F Y, Li Y J, et al. Determination of silver in geological samples by online argon gas dilution-inductively coupled plasma-mass spectrometry with aqua regia extraction[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(3): 249−255. doi: 10.3969/j.issn.2095-1035.2023.03.008 |
[31] | 刘向磊, 孙文军, 文田耀, 等. 三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素[J]. 岩矿测试, 2020, 39(5): 793−800. Liu X L, Sun W J, Wen T Y, et al. Determination of 23 metal elements in detailed soil survey samples by inductively coupled plasma-mass spectrometry with three acid stepwise digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 793−800. |
Influence of helium flow rate on interference coefficients of 93Nb-109Ag and 91Zr-109Ag
Influence of helium flow rate on signal background intensity ratio of Ag