Citation: | AN Zihan, ZHANG Hongyu, YIN Jiaxin, ZHANG Pan, YAO Min, HUANG Kangjun. Determination of Magnesium Isotopic Composition of Plant Chlorophylls Based on HPLC and MC-ICP-MS[J]. Rock and Mineral Analysis, 2024, 43(3): 476-486. doi: 10.15898/j.ykcs.202208300161 |
The accurate determination of magnesium isotope values of chlorophyll a and chlorophyll b is particularly important for the study of magnesium biosynthesis pathways during chlorophyll formation. HPLC is required before MC-ICP-MS can be utilized, but HPLC lacks a method for separating chlorophylls. Therefore, it is necessary to develop a set of methods for separating plant chlorophyll a and chlorophyll b. The samples separated by this method are suitable for magnesium isotope determination by MC-ICP-MS. Based on the detection wavelength of 665nm and C18 column (7.6mm×250mm, 5μm), the HPLC conditions were optimized by three-factor and three-level orthogonal design to obtain the required parameters. The correlation coefficients of chlorophyll a and chlorophyll b standard curves in the concentration range of 5−50mg/L were greater than 0.9996, the detection limits were 0.40−1.09mg/L, the quantification limits were 1.22−3.31mg/L, the relative standard deviation was less than 8.10%, and the recoveries were 91.92%−111.11%. The magnesium isotope data of the isolated samples also showed that the column temperature of 25℃, flow rate of 1mL/min, and methanol-acetone (80∶20, V/V) mobile phase were reliable as HPLC separation conditions. The method established in this paper provides technical support for the separation of chlorophyll a and chlorophyll b in plants, and the separated samples can be used for magnesium isotope determination. The BRIEF REPORT is available for this paper at
[1] | 刘金科, 韩贵琳. 镁同位素在森林生态系统研究中的应用[J]. 生态学杂志, 2019, 38(3): 899−907. doi: 10.13292/j.1000-4890.201903.005 Liu J K, Han G L. Research advances about magnesium isotope in forest ecosystems[J]. Chinese Journal of Ecology, 2019, 38(3): 899−907. doi: 10.13292/j.1000-4890.201903.005 |
[2] | 陈良碧, 蔡丹, 张林安, 等. 植物镁离子转运及镁胁迫响应机制研究进展[J]. 生命科学研究, 2021, 25(5): 442−447. doi: 10.16605/j.cnki.1007-7847.2021.08.0189 Chen L B, Cai D, Zhang L A, et al. Advances in mechanisms of magnesium transport and response to magnesium stress in plants[J]. Life Science Research, 2021, 25(5): 442−447. doi: 10.16605/j.cnki.1007-7847.2021.08.0189 |
[3] | Tian X Y, He D D, Bai S, et al. Physiological and molecular advances in magnesium nutrition of plants[J]. Plant and Soil, 2021, 468(1-2): 1−17. doi: 10.1007/s11104-021-05139-w |
[4] | Kleczkowski L A, Igamberdiev A U. Magnesium signaling in plants[J]. International Journal of Molecular Sciences, 2021, 22(3): 1159. doi: 10.4161/15592324.2014.992287 |
[5] | Xie K, Cakmak I, Wang S Y, et al. Synergistic and antagonistic interactions between potassium and magnesium in higher plants[J]. The Crop Journal, 2021, 9(2): 249−256. doi: 10.1016/j.cj.2020.10.005 |
[6] | Ishfaq M, Wang Y Q, Yan M W, et al. Physiological essence of magnesium in plants and its widespread deficiency in the farming system of China[J]. Frontiers in Plant Science, 2022, 13: 802274. doi: 10.3389/fpls.2022.802274 |
[7] | 李佳佳, 于旭东, 蔡泽坪, 等. 高等植物叶绿素生物合成研究进展[J]. 分子植物育种, 2019, 17(18): 6013−6019. doi: 10.13271/j.mpb.017.006013 Li J J, Yu X D, Cai Z P, et al. An overview of chlorophyll biosynthesis in higher plants[J]. Molecular Plant Breeding, 2019, 17(18): 6013−6019. doi: 10.13271/j.mpb.017.006013 |
[8] | Hu X Y, Gu T Y, Khan I, et al. Research progress in the interconversion, turnover and degradation of chlorophyll[J]. Cells, 2021, 10(11): 3134. doi: 10.3390/cells10113134 |
[9] | Qiu N W, Jiang D C, Wang X S, et al. Advances in the members and biosynthesis of chlorophyll family[J]. Photosynthetica, 2019, 57(4): 974−984. doi: 10.32615/ps.2019.116 |
[10] | 黄康俊, 滕方振, 沈冰, 等. 镁同位素示踪表生地质过程的原理及应用[J]. 矿物岩石地球化学通报, 2022, 41(2): 213−234, 201. doi: 10.19658/j.issn.1007-2802.2022.41.014 Huang K J, Teng F Z, Shen B, et al. Tracing surficial processes by magnesium isotopes: Principles and applications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(2): 213−234, 201. doi: 10.19658/j.issn.1007-2802.2022.41.014 |
[11] | Wrobel K, Karasiński J, Tupys A, et al. Magnesium-isotope fractionation in chlorophyll-a extracted from two plants with different pathways of carbon fixation (C3, C4)[J]. Molecules, 2020, 25(7): 1644. doi: 10.3390/molecules25071644 |
[12] | Moynier F, Fujii T. Theoretical isotopic fractionation of magnesium between chlorophylls[J]. Scientific Reports, 2017, 7: 6973. doi: 10.1038/s41598-017-07305-6 |
[13] | Black J R, Yin Q Z, Casey W H. An experimental study of magnesium-isotope fractionation in chlorophyll-a photosynthesis[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4072−4079. doi: 10.1016/j.gca.2006.06.010 |
[14] | Black J R, Yin Q Z, Rustad J R, et al. Magnesium isotopic equilibrium in chlorophylls[J]. Journal of the American Chemical Society, 2007, 129(28): 8690−8691. doi: 10.1021/ja072573i |
[15] | Ra K, Kitagawa H. Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(7): 817−821. doi: 10.1039/b701213f |
[16] | Pokharel R, Gerrits R, Schuessler J A, et al. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants[J]. Environmental Science & Technology, 2018, 52(21): 12216−12224. doi: 10.1021/acs.est.8b02238 |
[17] | Isaji Y, Yoshimura T, Araoka D, et al. Magnesium isotope fractionation during synthesis of chlorophyll a and bacteriochlorophyll a of benthic phototrophs in hypersaline environments[J]. ACS Earth and Space Chemistry, 2019, 3(6): 1073−1079. doi: 10.1021/acsearthspacechem.9b00013 |
[18] | Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1-2): 101−117. doi: 10.1007/s11120-013-9874-6 |
[19] | 杨淑华, 巩志忠, 郭岩, 等. 中国植物应答环境变化研究的过去与未来[J]. 中国科学:生命科学, 2019, 49(11): 1457−1478. doi: 10.1360/SSV-2019-0201 Yang S H, Gong Z Z, Guo Y, et al. Studies on plant responses to environmental change in China: The past and the future[J]. Scientia Sinica Vitae, 2019, 49(11): 1457−1478. doi: 10.1360/SSV-2019-0201 |
[20] | 张宏宇. 胡敏酸对水稻吸收硒和镉的影响研究[D]. 武汉: 中国地质大学(武汉), 2020: 24-25. Zhang H Y. Effect of humic acid on selenium and cadmium uptake in rice (Oryza sativa L. )[D]. Wuhan: China University of Geosciences (Wuhan), 2020: 24−25. |
[21] | 丁跃, 吴刚, 郭长奎. 植物叶绿素降解机制研究进展[J]. 生物技术通报, 2016, 32(11): 1−9. doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001 Ding Y, Wu G, Guo C K. Research advance on chlorophyll degradation in plants[J]. Biotechnology Bulletin, 2016, 32(11): 1−9. doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001 |
[22] | 邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定[J]. 植物学报, 2016, 51(5): 667−678. doi: 10.11983/CBB15190 Qiu N W, Wang X S, Yang F B, et al. Fast extraction and precise determination of chlorophyll[J]. Chinese Bulletin of Botany, 2016, 51(5): 667−678. doi: 10.11983/CBB15190 |
[23] | Pniewski F. HPLC separation of cyanobacterial and algal photosynthetic pigments[J]. Biologia, 2020, 75(2): 223−233. doi: 10.2478/s11756-019-00407-8 |
[24] | Hu X Y, Khan I, Jiao Q S, et al. Chlorophyllase, a common plant hydrolase enzyme with a long history, is still a puzzle[J]. Genes, 2021, 12(12): 1871. doi: 10.3390/genes12121871 |
[25] | Barry C S. The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants[J]. Plant Science, 2009, 176(3): 325−333. doi: 10.1016/j.plantsci.2008.12.013 |
[26] | Hu X, Tanaka A, Tanaka R. Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples[J]. Plant Methods, 2013, 9: 19. doi: 10.1186/1746-4811-9-19 |
[27] | 周武先, 段媛媛, 卢超, 等. 高效提取3种不同类型植物叶片色素的方法[J]. 西北农业学报, 2019, 28(1): 97−104. doi: 10.7606/j.issn.1004-1389.2019.01.012 Zhou W X, Duan Y Y, Lu C, et al. Efficient methods for extracting pigments from three different types of plant leaves[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(1): 97−104. doi: 10.7606/j.issn.1004-1389.2019.01.012 |
[28] | 刘亚轩, 李晓静, 白金峰, 等. 植物样品中无机元素分析的样品前处理方法和测定技术[J]. 岩矿测试, 2013, 32(5): 681−693. doi: 10.15898/j.cnki.11-2131/td.2013.05.001 Liu Y X, Li X J, Bai J F, et al. Review on sample pretreatment methods and determination techniques for inorganic elements in plant samples[J]. Rock and Mineral Analysis, 2013, 32(5): 681−693. doi: 10.15898/j.cnki.11-2131/td.2013.05.001 |
[29] | 李杨子, 黄华宇, 贺茂勇, 等. 植物的非传统稳定同位素前处理及测定技术研究进展[J]. 地球环境学报, 2023, 14(3): 284−296. doi: 10.7515/JEE221016 Li Y Z, Huang H Y, He M Y, et al. Advances in non-traditional stable isotope pretreatment and determination techniques for plants[J]. Journal of Earth Environment, 2023, 14(3): 284−296. doi: 10.7515/JEE221016 |
[30] | Bao Z A, Huang K J, Huang T Z, et al. Precise magnesium isotope analyses of high-K and low-Mg rocks by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 940−953. doi: 10.1039/c9ja00002j |
[31] | 刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399−424. doi: 10.13745/j.esf.sf.2022.10.46 Liu J W, Tian S H, Wang L. Application of magnesium stable isotopes for studying important geological processes—A review[J]. Earth Science Frontiers, 2023, 30(3): 399−424. doi: 10.13745/j.esf.sf.2022.10.46 |
[32] | 梁洁, 李栋, 王明达, 等. 利用正交实验法优化青藏高原湖泊沉积色素提取与分析[J]. 中国科学:地球科学, 2016, 46(4): 497−511. doi: 10.1007/s11430-015-5240-1 Liang J, Li D, Wang M D, et al. Application of orthogonal design to the extraction and HPLC analysis of sedimentary pigments from lakes of the Tibetan Plateau[J]. Science China: Earth Sciences, 2016, 46(4): 497−511. doi: 10.1007/s11430-015-5240-1 |
[33] | 程红艳, 陈军辉, 张道来, 等. 超声波辅助提取RP-HPLC法测定浒苔中的叶绿素a、b[J]. 海洋科学, 2010, 34(2): 23−27. Cheng H Y, Chen J H, Zhang D L, et al. Determination of chlorophyll a and chlorophyll b in Enteromorpha prolifera by ultrasound-assisted extraction with RP-HPLC[J]. Marine Sciences, 2010, 34(2): 23−27. |
[34] | 江涛, 丛敏, 甘居利, 等. 高效液相色谱法测定海洋水体与沉积物中光合色素[J]. 分析化学, 2012, 40(4): 517−522. doi: 10.3724/SP.J.1096.2012.11089 Jiang T, Cong M, Gan J L, et al. Determination of photosynthetic pigments in sea water and marine sediments by high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2012, 40(4): 517−522. doi: 10.3724/SP.J.1096.2012.11089 |
[35] | Bao Z A, Zong C L, Chen K Y, et al. Chromatographic purification of Ca and Mg from biological and geological samples for isotope analysis by MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2020, 448: 116268. doi: 10.1016/j.ijms.2019.116268 |
[36] | Zhang P, Huang K J, Luo M, et al. Constraining the terminal Ediacaran seawater chemistry by Mg isotopes in dolostones from the Yangtze Platform, South China[J]. Precambrian Research, 2022, 377: 106700. doi: 10.1016/j.precamres.2022.106700 |
[37] | 王泽洲. 深部碳循环的Zn-Mg同位素示踪[D]. 北京: 中国地质大学(北京), 2020: 83-84. Wang Z Z. Tracing the deep carbon cycle using Zn-Mg isotopes[D]. Beijing: China University of Geosciences (Beijing), 2020: 83−84. |
[38] | 程方奎, 严家平, 范廷玉, 等. 基于正交试验法的景观水体叶绿素a最佳提取条件研究[J]. 生态科学, 2014, 33(6): 1085−1090. doi: 10.14108/j.cnki.1008-8873.2014.06.008 Cheng F K, Yan J P, Fan T Y, et al. Research on optimizing operation parameters for leaching chlorophyll-a of landscape water based on orthogonal experiments[J]. Ecological Science, 2014, 33(6): 1085−1090. doi: 10.14108/j.cnki.1008-8873.2014.06.008 |
[39] | Zhao J, Yao P, Yu Z G, et al. Orthogonal design for optimization of pigment extraction from surface sediments of the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2011, 30(4): 33−42. doi: 10.1007/s13131-011-0131-6 |
[40] | Vanheukelem L, Lewitus J, Kana T M, et al. Improved separations of phytoplankton pigments using temperature-controlled high performance liquid chromatography[J]. Marine Ecology Progress Series, 1994, 114(3): 303−313. doi: 10.3354/meps114303 |
[41] | Tanaka R, Tanaka A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes[J]. Biochimica et Biophysica Acta-Bioenergetics, 2011, 1807(8): 968−976. doi: 10.1016/j.bbabio.2011.01.002 |
Chromatograms of orthogonal test for chlorophyll separation conditions
Magnesium isotope values of chlorophyll and seawater samples