Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 3
Article Contents

SUN Hongbin, YU Tingting, ZANG Huiyuan, GUO Lin, WANG Lei. Research on Pre-Treatment Technology and Analysis Methods for Main Components in Soluble Potassium Salt[J]. Rock and Mineral Analysis, 2024, 43(3): 449-458. doi: 10.15898/j.ykcs.202308080132
Citation: SUN Hongbin, YU Tingting, ZANG Huiyuan, GUO Lin, WANG Lei. Research on Pre-Treatment Technology and Analysis Methods for Main Components in Soluble Potassium Salt[J]. Rock and Mineral Analysis, 2024, 43(3): 449-458. doi: 10.15898/j.ykcs.202308080132

Research on Pre-Treatment Technology and Analysis Methods for Main Components in Soluble Potassium Salt

More Information
  • Potassium salt is one of the scarcest mineral resources in China, and it is the main raw material for potassium fertilizer in the three major fertilizers of agriculture. Currently, soluble potassium salt resources are the main ones with development and utilization value. At present, there is no national standard material or standard analysis method for soluble potassium salts. In the experiments, soluble potassium salt samples were dissolved by electric heating plate and ultrasonic oscillation. According to the main components of soluble potassium salts, a method for the determination of K+, Na+, Ca2+ and Mg2+ by ICP-OES and a method for the determination of Cl and SO4 2− by ion chromatography (IC) in soluble potassium salts were established. Through experimental conditions, the dissolution temperature of the electric heating plate was determined to be 160℃ and slightly boiled for 20min; the ultrasonic oscillation dissolution power was 60Hz and the time was 20min. The precision of the two methods was between 0.55%−3.19% (RSD, n=11), and the detection limit was between 0.01μg/g to 0.05μg/g. Both dissolution methods of soluble potassium salts can be widely used in daily detection. The electric heating plate dissolution method is more suitable for batch sample analysis in the laboratory. The ultrasonic oscillator dissolution method is simple and fast, and can be widely used in the field exploration of potassium salts, which can greatly improve the work efficiency and guide the smooth development of prospecting operations in real time.

  • 加载中
  • [1] 赵元艺, 焦鹏程, 李波涛, 等. 中国可溶性钾盐资源地质特征与潜力评价[J]. 矿床地质, 2010, 29(4): 649−656.

    Google Scholar

    Zhao Y Y, Jiao P C, Li B T, et al. Geological characteristics and resource potential of soluble potash in China[J]. Mineral Deposits, 2010, 29(4): 649−656.

    Google Scholar

    [2] 郑绵平, 齐文, 张永生. 中国钾盐地质资源现状与找钾方向初步分析[J]. 地质通报, 2006, 25(11): 1239−1246.

    Google Scholar

    Zheng M P, Qi W, Zhang Y S. Present situation of potash resources and direction of potash search in China[J]. Geological Bulletin of China, 2006, 25(11): 1239−1246.

    Google Scholar

    [3] 牟思宇, 沙景华, 闫晶晶, 等. 中国钾盐供应安全的主成分-灰色关联分析[J]. 中国矿业, 2018, 27(3): 27−31.

    Google Scholar

    Mou S Y, Sha J H, Yan J J, et al. Principal component and gray correlation analysis of potash supply safety in China[J]. China Mining Magazine, 2018, 27(3): 27−31.

    Google Scholar

    [4] 罗婷, 张永庆, 郑明贵, 等. 中国钾盐资源安全评估与预警研究[J]. 地球科学进展, 2022, 37(6): 575−587.

    Google Scholar

    Luo T, Zhang Y Q, Zheng M G, et al. Security assessment and early warning of potash resources in China[J]. Advances in Earth Science, 2022, 37(6): 575−587.

    Google Scholar

    [5] 徐其辉, 苗忠英, 娄鹏程, 等. 北羌塘坳陷中侏罗统夏里组蒸发岩硫同位素特征及其钾盐成矿意义[J]. 矿床地质, 2023, 42(2): 366−380.

    Google Scholar

    Xu Q H, Miao Z Y, Lou P C, et al. Sulfur isotope characteristics of evaporite and its metallogenic significance of potassium salts from middle Jurassic Xiali Formation in North Qiangtang Depression[J]. Mineral Deposits, 2023, 42(2): 366−380.

    Google Scholar

    [6] 商朋强, 祁才吉, 焦森, 等. 中国钾盐矿产预测评价模型和资源潜力分析[J]. 地质通报, 2019, 38(10): 1758−1767. doi: 10.12097/j.issn.1671-2552.2019.10.016

    CrossRef Google Scholar

    Shang P Q, Qi C J, Jiao S, et al. Potash assessment models and resource potential analysis in China[J]. Geological Bulletin of China, 2019, 38(10): 1758−1767. doi: 10.12097/j.issn.1671-2552.2019.10.016

    CrossRef Google Scholar

    [7] 张苏江, 崔立伟, 高鹏鑫, 等. 中国钾盐资源形势分析及管理对策建议[J]. 无机盐工业, 2015, 47(11): 1−6.

    Google Scholar

    Zhang S J, Cui L W, Gao P X, et al. Analysis on development situation of potash ore resources and recommended management strategies in China[J]. Inorganic Chemicals Industry, 2015, 47(11): 1−6.

    Google Scholar

    [8] 王春连, 刘成林, 王立成, 等. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展, 2013, 28(9): 976−987. doi: 10.11867/j.issn.1001-8166.2013.09.0976

    CrossRef Google Scholar

    Wang C L, Liu C L, Wang L C, et al. Reviews on potash deposit metallogenic conditions[J]. Advances in Earth Science, 2013, 28(9): 976−987. doi: 10.11867/j.issn.1001-8166.2013.09.0976

    CrossRef Google Scholar

    [9] 张永生, 郑绵平. 中国钾盐矿产基地成矿规律与深部探测技术示范[J]. 地学前缘, 2021, 28(6): 1−9.

    Google Scholar

    Zhang Y S, Zheng M P. Metallogenic models of potassium ore deposits in China and demonstration of deep exploration technology[J]. Earth Science Frontiers, 2021, 28(6): 1−9.

    Google Scholar

    [10] 李欣萌, 尹诗惠, 张旭冉, 等. 柴达木盆地大浪滩低品位钾盐矿物相分析[J]. 山东化工, 2019, 22(48): 125−126.

    Google Scholar

    Li X M, Yin S H, Zhang X R, et al. Mineral facies analysis of low-grade potash ore in Dalangtan Qaidam Basin[J]. Shandong Chemical Industry, 2019, 22(48): 125−126.

    Google Scholar

    [11] 谭慧婷, 孙伟, 崔玉照, 等. 钾矿资源现状与杂卤石的开发应用分析[J]. 无机盐工业, 2022, 54(6): 23−30.

    Google Scholar

    Tan H T, Sun W, Cui Y Z, et al. Present situation of potash resources and analysis of development and application of polyhalite[J]. Inorganic Chemicals Industry, 2022, 54(6): 23−30.

    Google Scholar

    [12] 白仟, 袁俊宏, 王章俊. 国内外水溶性钾盐资源及我国钾盐产业发展现状[J]. 资源与产业, 2014, 16(2): 37−46.

    Google Scholar

    Bai Q, Yuan J H, Wang Z J. Industrial advances of soluble potash resources in China and overseas[J]. Resources & Industries, 2014, 16(2): 37−46.

    Google Scholar

    [13] 刘琦, 冯振华, 管川, 等. 钾石盐溶浸开采溶解实验研究[J]. 化工矿物与加工, 2019(11): 19−23.

    Google Scholar

    Liu Q, Feng Z H, Guan C, et al. Experimental study on solution of sylvinite leaching mining[J]. Industrial Minerals & Processing, 2019(11): 19−23.

    Google Scholar

    [14] 刘威. 可溶性钾盐矿加工工艺实践[J]. 化工矿物与加工, 2014, 43(3): 49−53.

    Google Scholar

    Liu W. Practice of soluble potash processing technology[J]. Industrial Minerals & Processing, 2014, 43(3): 49−53.

    Google Scholar

    [15] 《岩石矿物分析》编委会. 岩石矿物分析(第四版 第二分册)[M]. 北京: 地质出版社, 2011: 477.

    Google Scholar

    The Editorial Committee of 《Rock and Mineral Analysis》.Rock and Mineral Analysis (The fourth edition:Vol.Ⅱ)[M]. Beijing: Geology Press, 2011: 477.

    Google Scholar

    [16] 韩晓. EDTA络合滴定法快速测定矿石中钙、镁[J]. 中国无机分析化学, 2019, 9(2): 54−57.

    Google Scholar

    Han X. Rapid determination of calcium and magnesium in ore by EDTA complex metric titration[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2): 54−57.

    Google Scholar

    [17] 康晓燕, 刘皓. 电导滴定联机测定钾盐中钾的含量[J]. 陕西师范大学学报(自然科学版), 2002, 14(3): 140−141.

    Google Scholar

    Kang X Y, Liu H. Quantitative determination of potassium by on line conductivity titration technique[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2002, 14(3): 140−141.

    Google Scholar

    [18] 马军, 李欣萌, 尹诗惠, 等. 大浪滩盐湖低品位钾盐矿溶浸工艺研究[J]. 临沂大学学报, 2019, 41(6): 26−31.

    Google Scholar

    Ma J, Li X M, Yin S H, et al. A study on the technology of leaching low-grade potassium salt ore in Dalangtan salt lake[J]. Journal of Linyi University, 2019, 41(6): 26−31.

    Google Scholar

    [19] 匡洪红, 韩仲果. 火焰原子吸收法测定氯化钾产品中钠离子含量[J]. 盐业与化工, 2010, 39(2): 26−27.

    Google Scholar

    Kuang H H, Han Z G. Determination of sodium ion content in potassium chloride by flame AAS[J]. Journal of Saltl Chemical Industry, 2010, 39(2): 26−27.

    Google Scholar

    [20] 张桂芹, 孙建之, 马培华, 等. 火焰原子吸收和发射光谱法测定盐湖卤水的锂钠钙镁离子[J]. 盐业与化工, 2007, 36(1): 10−12.

    Google Scholar

    Zhang G Q, Sun J Z, Ma P H, et al. Determination of Li+, Na+, Ca2+, Mg2+ content of salt lake brine by flame atomic absorption and flame emission spectrum method[J]. Journal of Salt Chemical Industry, 2007, 36(1): 10−12.

    Google Scholar

    [21] 杨红梅. 紫外光谱法测定钾盐中钾含量的方法研究[J]. 安徽农业科学, 2012, 40(4): 2032−2033. doi: 10.3969/j.issn.0517-6611.2012.04.040

    CrossRef Google Scholar

    Yang H M. Study on determination of potassium content in sylvite by ultraviolet spectrophotometry[J]. Journal of Anhui Agricultural Sciences, 2012, 40(4): 2032−2033. doi: 10.3969/j.issn.0517-6611.2012.04.040

    CrossRef Google Scholar

    [22] 李可及. 熔融制样X射线荧光光谱法测定岩盐中的主量成分[J]. 岩矿测试, 2016, 35(3): 290−294.

    Google Scholar

    Li K J. Determination of major components in rock salt by X-ray fluorescence spectrometry with sample fusion[J]. Rock and Mineral Analysis, 2016, 35(3): 290−294.

    Google Scholar

    [23] 张旭, 李文波, 马成冰, 等. X射线荧光光谱法测定光卤石成分[J]. 理化检验(化学分册), 2017, 53(7): 818−820.

    Google Scholar

    Zhang X, Li W B, Ma C B, et al. Determination of components in carnallite by X-ray fluorescence spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(7): 818−820.

    Google Scholar

    [24] 刘晓, 袁继海, 孙东阳, 等. 便携式锂钾分析仪在钾盐资源现场勘查中的应用[J]. 地球学报, 2021, 42(4): 573−578. doi: 10.3975/cagsb.2020.103001

    CrossRef Google Scholar

    Liu X, Yuan J H, Sun D Y, et al. On-site application of portable Li-K analyzer in the exploration of potash resources[J]. Acta Geoscientica Sinica, 2021, 42(4): 573−578. doi: 10.3975/cagsb.2020.103001

    CrossRef Google Scholar

    [25] 焦距, 詹秀春, 樊兴涛, 等. 能量色散 X 射线荧光光谱法现场测定钾盐钻井泥浆中的钾、溴、锶[J]. 分析试验室, 2016, 35(9): 1111−1116.

    Google Scholar

    Jiao J, Zhan X C, Fan X T, et al. On-site determination of K, Br and Sr in sylvite drilling mud by energy dispersive X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(9): 1111−1116.

    Google Scholar

    [26] Vievard J, Amoikon T L, Coulibaly N A, et al. Extraction and quantification of pesticides and metals in palm wines by HS-SPME/GC-MS and ICP-AES/MS[J]. Food Chemistry, 2022, 393: 133352. doi: 10.1016/j.foodchem.2022.133352

    CrossRef Google Scholar

    [27] Zeng Y, Yokoyama Y, Hirabayashi S, et al. A rapid and precise method of establishing age model for coral skeletal radiocarbon to study surface oceanography using coupled X-ray photos and ICP-AES measurement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2022, 533: 23−28.

    Google Scholar

    [28] Phitchan S, Nunticha L, Charles P S, et al. Carbonic acid eluent ion chromatography[J]. Analytical Chemistry, 2019, 91(5): 3636−3644. doi: 10.1021/acs.analchem.8b05627

    CrossRef Google Scholar

    [29] 王斌, 刘巍平, 王荣, 等. 离子色谱法测定钾盐矿中硫酸根和溴离子的含量[J]. 理化检验(化学分册), 2018, 54(7): 806−809.

    Google Scholar

    Wang B, Liu W P, Wang R, et al. Determination of sulfate and bromine ions in potassium salt mines by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(7): 806−809.

    Google Scholar

    [30] 王培艳, 马成冰. 滤纸制样-X射线荧光光谱法测定钾石岩中的主量元素[J]. 理化检验(化学分册), 2018, 54(3): 353−354.

    Google Scholar

    Wang P Y, Ma C B. Determination of major elements in potassium salt by X-ray fluorescence spectroscopy with filter paper sample preparation[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(3): 353−354.

    Google Scholar

    [31] 黎春阁, 安莲英, 陈晓庆. 杂卤石溶解行为及制备矿物复合肥可行性分析[J]. 化工矿物与加工, 2013, 42(1): 20−23.

    Google Scholar

    Li C G, An L Y, Chen X Q. Dissolution behavior of polyhalite and feasibility study on production of mineral compound fertilizer[J]. Industrial Minerals & Processing, 2013, 42(1): 20−23.

    Google Scholar

    [32] 王洋, 张露露, 王艳超, 等. 钾盐矿床中含石膏盐样品测定的质量控制方法改进[J]. 中国无机分析化学, 2019, 9(6): 35−40. doi: 10.3969/j.issn.2095-1035.2019.06.008

    CrossRef Google Scholar

    Wang Y, Zhang L L, Wang Y C, et al. Improvement of quality control method for determination of gypsum salt samples in potassium salt[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(6): 35−40. doi: 10.3969/j.issn.2095-1035.2019.06.008

    CrossRef Google Scholar

    [33] 靳芳, 李吉生, 王慧. 盐湖固体盐样及卤水样的质量控制方法[J]. 分析试验室, 2010, 29(1): 164−166.

    Google Scholar

    Jin F, Li J S, Wang H. Quality control methods for solid salt samples and brine samples from salt lakes[J]. Chinese Journal of Analysis Laboratory, 2010, 29(1): 164−166.

    Google Scholar

    [34] 李海明, 李守文, 张富强, 等. 固体化学盐样检测数据的质量控制[J]. 岩矿测试, 2011, 30(4): 505−509. doi: 10.3969/j.issn.0254-5357.2011.04.025

    CrossRef Google Scholar

    Li H M, Li S W, Zhang F Q, et al. Quality control the testing data of solid chemical salt samples[J]. Rock and Mineral Analysis, 2011, 30(4): 505−509. doi: 10.3969/j.issn.0254-5357.2011.04.025

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(9)

Article Metrics

Article views(24) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint