Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

ZHANG Xuejun, ZHANG Yaoyao, LIU Kai, HE Xiaolong, WANG Shuxun, JIA Wuhui, ZHAO Zenan. Zircon U-Pb and Lu-Hf Isotopic Dating of Magmatic Rocks in the Wunugetushan Porphyry Copper-Molybdenum Deposit, Inner Mongolia[J]. Rock and Mineral Analysis, 2022, 41(5): 774-788. doi: 10.15898/j.cnki.11-2131/td.202207180132
Citation: ZHANG Xuejun, ZHANG Yaoyao, LIU Kai, HE Xiaolong, WANG Shuxun, JIA Wuhui, ZHAO Zenan. Zircon U-Pb and Lu-Hf Isotopic Dating of Magmatic Rocks in the Wunugetushan Porphyry Copper-Molybdenum Deposit, Inner Mongolia[J]. Rock and Mineral Analysis, 2022, 41(5): 774-788. doi: 10.15898/j.cnki.11-2131/td.202207180132

Zircon U-Pb and Lu-Hf Isotopic Dating of Magmatic Rocks in the Wunugetushan Porphyry Copper-Molybdenum Deposit, Inner Mongolia

More Information
  • BACKGROUND

    The Wunugetushan copper-molybdenum deposit located in the northwest of the Erguna—Hulun fault is a large porphyry copper-molybdenum deposit. Magmatic rocks are widespread in the mining area.

    OBJECTIVES

    In order to determine the emplacement age and tectonic setting of ore-hosting surrounding rock and ore-forming parent rock, and to discuss the petrogenesis and metallogenic dynamics.

    METHODS

    Zircon U-Pb isotopes and zircon Lu-Hf isotopes of rocks were studied by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) and laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    RESULTS

    (1) The zircons in the study area have a high content of REE with strong enrichment of HREE, δEu negative anomaly and δCe positive anomaly, and the REE distribution curves are left-inclined. (2) The anisomitic monzogranites are the ore-hosting rocks with a weighted average value of 200.96±0.88Ma, indicating that the rock mass was formed in early Jurassic. Zircon εHf(t) ranges from 0.1 to 5.8, single-stage Hf model ages (TDM) range from 643Ma to 882Ma, and two-stage Hf model ages (TDMC) range from 874Ma to 1235Ma. (3) The rhyolite porphyritic lavas are the ore-forming parent rocks with a weighted average value of 179.58±0.91Ma, indicating that the rocks formed in the Early Jurassic. Zircon εHf(t) ranges from 4.3 to 6.6, single-stage Hf model ages (TDM) range from 570Ma to 663Ma, and two-stage Hf model ages (TDMC) range from 802Ma to 952Ma.

    CONCLUSIONS

    The zircon Lu-Hf isotopic characteristics of the anisomitic monzogranites indicate that the magma source is a mixture of mantle and a small amount of ancient crust. The magma source area of the rhyolite porphyritic lavas is dominated by mantle-derived materials. The transition evolution process from crust source to mantle source from host rock to metallogenic parent rock is revealed.

  • 加载中
  • [1] Kirkham R V, Sinclair W D. Porphyry copper, gold, molybdenum, tungsten, tin and siliver. Geology of Canadian mineral deposit type[J]. Geology Nation America 1995(1): 421-446.

    Google Scholar

    [2] Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515

    CrossRef Google Scholar

    [3] 侯增谦, 潘小菲, 杨志明, 等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2): 173-180.

    Google Scholar

    Hou Z Q, Pan X F, Yang Z M, et al. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings[J]. Geoscience, 2007, 21(2): 173-180.

    Google Scholar

    [4] 侯增谦. 斑岩Cu-Mo-Au矿床: 新认识与新进展[J]. 地学前缘, 2004, 11(1): 131-143. doi: 10.3321/j.issn:1005-2321.2004.01.010

    CrossRef Google Scholar

    Hou Z Q. Porphyry Cu-Mo-Au deposits: Some new insights and advances[J]. Earth Science Frontiers, 2004, 11(1): 131-143. doi: 10.3321/j.issn:1005-2321.2004.01.010

    CrossRef Google Scholar

    [5] 芮宗瑶, 张洪涛, 陈仁义, 等. 斑岩铜矿研究中若干问题探讨[J]. 矿床地质, 2006, 25(4): 491-505. doi: 10.3969/j.issn.0258-7106.2006.04.014

    CrossRef Google Scholar

    Rui Z Y, Zhang H T, Chen R Y, et al. An approach to some problems of porphyry copper deposits[J]. Mineral Deposits, 2006, 25(4): 491-505. doi: 10.3969/j.issn.0258-7106.2006.04.014

    CrossRef Google Scholar

    [6] Oyarzun R, Ma'rquez A, Liho J, et al. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alialine magmatism[J]. Mineralium Deposita, 2001, 36: 794-798. doi: 10.1007/s001260100205

    CrossRef Google Scholar

    [7] Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusive generated during Mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220: 139-155. doi: 10.1016/S0012-821X(04)00007-X

    CrossRef Google Scholar

    [8] Core D P, Kesler S E, Essene E J. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah[J]. Geology, 2006, 34: 41-44.

    Google Scholar

    [9] Harris A C, Kamenetsky V S, White N C, et al. Melt inclusions in veins: Linking magmas and porphyry Cu deposits[J]. Science, 2003, 302: 2109-2111. doi: 10.1126/science.1089927

    CrossRef Google Scholar

    [10] 黄蕾蕾. 内蒙古乌努格吐山矿山高精度三维地质建模与评价[D]. 北京: 中国地质大学(北京), 2020: 1-120.

    Google Scholar

    Huang L L. High-precision three-dimensional geological modeling and evaluation of Unugtuishan mine in Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2020: 1-120.

    Google Scholar

    [11] 秦克章, 李慧民, 李伟实, 等. 内蒙古乌努格吐山斑岩铜钼矿床的成岩、成矿时代[J]. 地质论评, 1999, 45(2): 180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011

    CrossRef Google Scholar

    Qin K Z, Li H M, Li W S, et al. Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, northwestern China[J]. Geological Review, 1999, 45(2): 180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011

    CrossRef Google Scholar

    [12] 秦克章, 田中亮吏, 李伟实, 等. 满洲里地区印支期花岗岩Rb-Sr等时线年代学证据[J]. 岩石矿物学杂志, 1998, 17(3): 235-240.

    Google Scholar

    Qin K Z, Tian Z L L, Li W S, et al. The discovery of Indo-Sinian granites in Manzhouli area: Evidence from Rb-Sr isochrons[J]. Acta Petrologica et Mineralogica, 1998, 17(3): 235-240.

    Google Scholar

    [13] 李诺, 陈衍景, 赖勇, 等. 内蒙古乌努格吐山斑岩铜钼矿床流体包裹体研究[J]. 岩石学报, 2007, 23(9): 2177-2188. doi: 10.3969/j.issn.1000-0569.2007.09.016

    CrossRef Google Scholar

    Li N, Chen Y J, Lai Y, et al. Fluid inclusion study of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 2007, 23(9): 2177-2188. doi: 10.3969/j.issn.1000-0569.2007.09.016

    CrossRef Google Scholar

    [14] 谭刚. 内蒙古乌努格吐山斑岩铜钼矿床成矿作用研究[D]. 北京: 中国地质科学院, 2011: 36-63.

    Google Scholar

    Tan G. Study on mineralization of Unugtuishan porphyry Cu-Mo deposit, Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences, 2011: 36-63.

    Google Scholar

    [15] 王天豪, 张书义, 孙德有, 等. 满洲里南部中生代花岗岩的锆石U-Pb年龄及Hf同位素特征[J]. 世界地质, 2014, 33(1): 26-38. doi: 10.3969/j.issn.1004-5589.2014.01.003

    CrossRef Google Scholar

    Wang T H, Zhang S Y, Sun D Y, et al. Zircon U-Pb ages and Hf isotopic characteristics of Mesozoic granitoids from southern Manzhouli, Inner Mongolia[J]. Global Geology, 2014, 33(1): 26-38. doi: 10.3969/j.issn.1004-5589.2014.01.003

    CrossRef Google Scholar

    [16] Wang Y H, Zhao C B, Zhang F F, et al. SIMS zircon U-Pb and molybdenite Re-Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu-Mo deposit and granitoids in NE China and their geological significance[J]. Gondwana Research, 2015, 28, 1228-1245. doi: 10.1016/j.gr.2014.10.001

    CrossRef Google Scholar

    [17] Zhang F F, Wang Y H, Liu J J, et al. Origin of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions[J]. Journal of Asian Earth Sciences, 2016, 117: 208-224. doi: 10.1016/j.jseaes.2015.12.018

    CrossRef Google Scholar

    [18] Mi K F, Liu Z J, Liu R B, et al. U-Pb zircon, geochem-ical and Sr-Nd-Hf isotopic constraints on age and origin of the intrusions from Wunugetushan porphyry deposit, northeast China: Implication for Triassic—Jurassic Cu-Mo mineralization in Mongolia—Erguna metallogenic belt[J]. International Geology Review, 2017, 60(4): 496-512.

    Google Scholar

    [19] 宓奎峰, 吕志成, 柳振江, 等. 内蒙古乌努格吐山铜钼矿床Cu, Mo同位素组成及绢云母Ar-Ar测年对区域成矿作用的启示[J]. 岩石学报, 2021, 37(6): 1875-1898.

    Google Scholar

    Fu K F, Lyu Z C, Liu Z J, et al. Compositions of Cu and Mo isotopes, sericite Ar-Ar ages of Wunugetushan Cu-Mo deposit in Inner Mongolia: Implications for regional mineralization[J]. Acta Petrologica Sinica, 2021, 37(6): 1875-1898.

    Google Scholar

    [20] 陈殿芬, 艾永德, 李荫清. 乌努格吐山斑岩铜钼矿床中金属矿物的特征[J]. 岩石矿物学杂志, 1996, 15(4): 346-354.

    Google Scholar

    Chen D F, Ai Y D, Li Y Q. Characteristics of metallic minerals from the Wunugetushan porphyry copper-molybdenum deposit[J]. Acta Petrologica et Mineralogica, 1996, 15(4): 346-354.

    Google Scholar

    [21] 李诺, 孙亚莉, 李晶, 等. 内蒙古乌努格吐山斑岩铜钼矿辉钼矿铼锇等时线年龄及其成矿地球动力学背景[J]. 岩石学报, 2007, 23(11): 2881-2888. doi: 10.3969/j.issn.1000-0569.2007.11.018

    CrossRef Google Scholar

    Li N, Sun Y L, Li J, et al. Molybdenite Re/Os isochron age of the Wunugetushan porphyry Cu/Mo deposit, Inner Mongolia and its implication for metallogenic geodynamics[J]. Acta Petrologica Sinica, 2007, 23(11): 2881-2888. doi: 10.3969/j.issn.1000-0569.2007.11.018

    CrossRef Google Scholar

    [22] He X L, Yu Q Y, Liu S Y, et al. Origin of the Erdaohe Ag-Pb-Zn deposit, central Great Xing'an Range, northeast China: Constraints from fluid inclusions, zircon U-Pb geochronology, and stable isotopes[J]. Ore Geology Reviews, 2021, 107: 104309.

    Google Scholar

    [23] Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [24] AndersenT. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    [25] LiuY S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [26] Goolaerts A, Mattielli N, Jong J D, et al. Hf and Lu iso-topic reference values for the zircon standard 91500 by MC-ICP-MS[J]. Chemical Geology, 2004, 206(1-2): 1-9. doi: 10.1016/j.chemgeo.2004.01.008

    CrossRef Google Scholar

    [27] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochim Cosmochim Acta, 2000, 64: 133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [28] Griffin, W L, Wang X, Jackson S E, et al. Zircon geochemistry and magma mixing, SE China: Insita analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8

    CrossRef Google Scholar

    [29] Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples form the western Alps[M]//Cathodoluminescence in Geoscience. Germany: Springer-Verlag Berlin Heidelberg, 2000: 373-400.

    Google Scholar

    [30] Cleasson S, Vetrin V, Bayanova T, et al. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000, 51: 95-108. doi: 10.1016/S0024-4937(99)00076-6

    CrossRef Google Scholar

    [31] Belousova E A, Griffin W L, O' Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143 (5): 602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [32] Griffin W L, Belousova E A, Shee S R. Crustal Evolution in the northern Yilarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131(3-4): 213-282. doi: 10.1016/j.precamres.2003.12.010

    CrossRef Google Scholar

    [33] Hoskin P W O, Kinny P D, Whborn D, et al. Indentifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach[J]. Journal of Petrology, 2000, 41(9): 1365-1396. doi: 10.1093/petrology/41.9.1365

    CrossRef Google Scholar

    [34] Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2

    CrossRef Google Scholar

    [35] Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provenance indicatior[J]. Geology, 2000, 28(7): 627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2

    CrossRef Google Scholar

    [36] Hoskin P W P. Trace-element composition of hydrothermal zircon and the alteration of hadean zircon from the Jack Hills, Australia[M]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006

    CrossRef Google Scholar

    [37] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 02: 185-220.

    Google Scholar

    Wu F Y, Li X H, Zheng Y F, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologic Sinica, 2007, 23(2): 185-220.

    Google Scholar

    [38] Sun S S, Mcdonough W F. Chemical and isotopic systematics of ocean basalts: Impications for mantle composition and processes[M]. London: Geological Society of London and Blackwell Scientific Publications, 1989: 313-345.

    Google Scholar

    [39] Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172: 5-24.

    Google Scholar

    [40] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604.

    Google Scholar

    Wu Y B, Zheng Y F. Zircon genetic mineralogy and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604.

    Google Scholar

    [41] Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematic of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219: 311-324. doi: 10.1016/S0012-821X(04)00012-3

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(1582) PDF downloads(91) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint