Citation: | ZHANG Xuejun, ZHANG Yaoyao, LIU Kai, HE Xiaolong, WANG Shuxun, JIA Wuhui, ZHAO Zenan. Zircon U-Pb and Lu-Hf Isotopic Dating of Magmatic Rocks in the Wunugetushan Porphyry Copper-Molybdenum Deposit, Inner Mongolia[J]. Rock and Mineral Analysis, 2022, 41(5): 774-788. doi: 10.15898/j.cnki.11-2131/td.202207180132 |
The Wunugetushan copper-molybdenum deposit located in the northwest of the Erguna—Hulun fault is a large porphyry copper-molybdenum deposit. Magmatic rocks are widespread in the mining area.
In order to determine the emplacement age and tectonic setting of ore-hosting surrounding rock and ore-forming parent rock, and to discuss the petrogenesis and metallogenic dynamics.
Zircon U-Pb isotopes and zircon Lu-Hf isotopes of rocks were studied by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) and laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS).
(1) The zircons in the study area have a high content of REE with strong enrichment of HREE, δEu negative anomaly and δCe positive anomaly, and the REE distribution curves are left-inclined. (2) The anisomitic monzogranites are the ore-hosting rocks with a weighted average value of 200.96±0.88Ma, indicating that the rock mass was formed in early Jurassic. Zircon εHf(t) ranges from 0.1 to 5.8, single-stage Hf model ages (TDM) range from 643Ma to 882Ma, and two-stage Hf model ages (TDMC) range from 874Ma to 1235Ma. (3) The rhyolite porphyritic lavas are the ore-forming parent rocks with a weighted average value of 179.58±0.91Ma, indicating that the rocks formed in the Early Jurassic. Zircon εHf(t) ranges from 4.3 to 6.6, single-stage Hf model ages (TDM) range from 570Ma to 663Ma, and two-stage Hf model ages (TDMC) range from 802Ma to 952Ma.
The zircon Lu-Hf isotopic characteristics of the anisomitic monzogranites indicate that the magma source is a mixture of mantle and a small amount of ancient crust. The magma source area of the rhyolite porphyritic lavas is dominated by mantle-derived materials. The transition evolution process from crust source to mantle source from host rock to metallogenic parent rock is revealed.
[1] | Kirkham R V, Sinclair W D. Porphyry copper, gold, molybdenum, tungsten, tin and siliver. Geology of Canadian mineral deposit type[J]. Geology Nation America 1995(1): 421-446. |
[2] | Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 2003, 98: 1515-1533. doi: 10.2113/gsecongeo.98.8.1515 |
[3] | 侯增谦, 潘小菲, 杨志明, 等. 初论大陆环境斑岩铜矿[J]. 现代地质, 2007, 21(2): 173-180. Hou Z Q, Pan X F, Yang Z M, et al. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings[J]. Geoscience, 2007, 21(2): 173-180. |
[4] | 侯增谦. 斑岩Cu-Mo-Au矿床: 新认识与新进展[J]. 地学前缘, 2004, 11(1): 131-143. doi: 10.3321/j.issn:1005-2321.2004.01.010 Hou Z Q. Porphyry Cu-Mo-Au deposits: Some new insights and advances[J]. Earth Science Frontiers, 2004, 11(1): 131-143. doi: 10.3321/j.issn:1005-2321.2004.01.010 |
[5] | 芮宗瑶, 张洪涛, 陈仁义, 等. 斑岩铜矿研究中若干问题探讨[J]. 矿床地质, 2006, 25(4): 491-505. doi: 10.3969/j.issn.0258-7106.2006.04.014 Rui Z Y, Zhang H T, Chen R Y, et al. An approach to some problems of porphyry copper deposits[J]. Mineral Deposits, 2006, 25(4): 491-505. doi: 10.3969/j.issn.0258-7106.2006.04.014 |
[6] | Oyarzun R, Ma'rquez A, Liho J, et al. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alialine magmatism[J]. Mineralium Deposita, 2001, 36: 794-798. doi: 10.1007/s001260100205 |
[7] | Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusive generated during Mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 2004, 220: 139-155. doi: 10.1016/S0012-821X(04)00007-X |
[8] | Core D P, Kesler S E, Essene E J. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah[J]. Geology, 2006, 34: 41-44. |
[9] | Harris A C, Kamenetsky V S, White N C, et al. Melt inclusions in veins: Linking magmas and porphyry Cu deposits[J]. Science, 2003, 302: 2109-2111. doi: 10.1126/science.1089927 |
[10] | 黄蕾蕾. 内蒙古乌努格吐山矿山高精度三维地质建模与评价[D]. 北京: 中国地质大学(北京), 2020: 1-120. Huang L L. High-precision three-dimensional geological modeling and evaluation of Unugtuishan mine in Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2020: 1-120. |
[11] | 秦克章, 李慧民, 李伟实, 等. 内蒙古乌努格吐山斑岩铜钼矿床的成岩、成矿时代[J]. 地质论评, 1999, 45(2): 180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011 Qin K Z, Li H M, Li W S, et al. Intrusion and mineralization ages of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, northwestern China[J]. Geological Review, 1999, 45(2): 180-185. doi: 10.3321/j.issn:0371-5736.1999.02.011 |
[12] | 秦克章, 田中亮吏, 李伟实, 等. 满洲里地区印支期花岗岩Rb-Sr等时线年代学证据[J]. 岩石矿物学杂志, 1998, 17(3): 235-240. Qin K Z, Tian Z L L, Li W S, et al. The discovery of Indo-Sinian granites in Manzhouli area: Evidence from Rb-Sr isochrons[J]. Acta Petrologica et Mineralogica, 1998, 17(3): 235-240. |
[13] | 李诺, 陈衍景, 赖勇, 等. 内蒙古乌努格吐山斑岩铜钼矿床流体包裹体研究[J]. 岩石学报, 2007, 23(9): 2177-2188. doi: 10.3969/j.issn.1000-0569.2007.09.016 Li N, Chen Y J, Lai Y, et al. Fluid inclusion study of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia[J]. Acta Petrologica Sinica, 2007, 23(9): 2177-2188. doi: 10.3969/j.issn.1000-0569.2007.09.016 |
[14] | 谭刚. 内蒙古乌努格吐山斑岩铜钼矿床成矿作用研究[D]. 北京: 中国地质科学院, 2011: 36-63. Tan G. Study on mineralization of Unugtuishan porphyry Cu-Mo deposit, Inner Mongolia[D]. Beijing: Chinese Academy of Geological Sciences, 2011: 36-63. |
[15] | 王天豪, 张书义, 孙德有, 等. 满洲里南部中生代花岗岩的锆石U-Pb年龄及Hf同位素特征[J]. 世界地质, 2014, 33(1): 26-38. doi: 10.3969/j.issn.1004-5589.2014.01.003 Wang T H, Zhang S Y, Sun D Y, et al. Zircon U-Pb ages and Hf isotopic characteristics of Mesozoic granitoids from southern Manzhouli, Inner Mongolia[J]. Global Geology, 2014, 33(1): 26-38. doi: 10.3969/j.issn.1004-5589.2014.01.003 |
[16] | Wang Y H, Zhao C B, Zhang F F, et al. SIMS zircon U-Pb and molybdenite Re-Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu-Mo deposit and granitoids in NE China and their geological significance[J]. Gondwana Research, 2015, 28, 1228-1245. doi: 10.1016/j.gr.2014.10.001 |
[17] | Zhang F F, Wang Y H, Liu J J, et al. Origin of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions[J]. Journal of Asian Earth Sciences, 2016, 117: 208-224. doi: 10.1016/j.jseaes.2015.12.018 |
[18] | Mi K F, Liu Z J, Liu R B, et al. U-Pb zircon, geochem-ical and Sr-Nd-Hf isotopic constraints on age and origin of the intrusions from Wunugetushan porphyry deposit, northeast China: Implication for Triassic—Jurassic Cu-Mo mineralization in Mongolia—Erguna metallogenic belt[J]. International Geology Review, 2017, 60(4): 496-512. |
[19] | 宓奎峰, 吕志成, 柳振江, 等. 内蒙古乌努格吐山铜钼矿床Cu, Mo同位素组成及绢云母Ar-Ar测年对区域成矿作用的启示[J]. 岩石学报, 2021, 37(6): 1875-1898. Fu K F, Lyu Z C, Liu Z J, et al. Compositions of Cu and Mo isotopes, sericite Ar-Ar ages of Wunugetushan Cu-Mo deposit in Inner Mongolia: Implications for regional mineralization[J]. Acta Petrologica Sinica, 2021, 37(6): 1875-1898. |
[20] | 陈殿芬, 艾永德, 李荫清. 乌努格吐山斑岩铜钼矿床中金属矿物的特征[J]. 岩石矿物学杂志, 1996, 15(4): 346-354. Chen D F, Ai Y D, Li Y Q. Characteristics of metallic minerals from the Wunugetushan porphyry copper-molybdenum deposit[J]. Acta Petrologica et Mineralogica, 1996, 15(4): 346-354. |
[21] | 李诺, 孙亚莉, 李晶, 等. 内蒙古乌努格吐山斑岩铜钼矿辉钼矿铼锇等时线年龄及其成矿地球动力学背景[J]. 岩石学报, 2007, 23(11): 2881-2888. doi: 10.3969/j.issn.1000-0569.2007.11.018 Li N, Sun Y L, Li J, et al. Molybdenite Re/Os isochron age of the Wunugetushan porphyry Cu/Mo deposit, Inner Mongolia and its implication for metallogenic geodynamics[J]. Acta Petrologica Sinica, 2007, 23(11): 2881-2888. doi: 10.3969/j.issn.1000-0569.2007.11.018 |
[22] | He X L, Yu Q Y, Liu S Y, et al. Origin of the Erdaohe Ag-Pb-Zn deposit, central Great Xing'an Range, northeast China: Constraints from fluid inclusions, zircon U-Pb geochronology, and stable isotopes[J]. Ore Geology Reviews, 2021, 107: 104309. |
[23] | Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005 |
[24] | AndersenT. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X |
[25] | LiuY S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4 |
[26] | Goolaerts A, Mattielli N, Jong J D, et al. Hf and Lu iso-topic reference values for the zircon standard 91500 by MC-ICP-MS[J]. Chemical Geology, 2004, 206(1-2): 1-9. doi: 10.1016/j.chemgeo.2004.01.008 |
[27] | Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochim Cosmochim Acta, 2000, 64: 133-147. doi: 10.1016/S0016-7037(99)00343-9 |
[28] | Griffin, W L, Wang X, Jackson S E, et al. Zircon geochemistry and magma mixing, SE China: Insita analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61: 237-269. doi: 10.1016/S0024-4937(02)00082-8 |
[29] | Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples form the western Alps[M]//Cathodoluminescence in Geoscience. Germany: Springer-Verlag Berlin Heidelberg, 2000: 373-400. |
[30] | Cleasson S, Vetrin V, Bayanova T, et al. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J]. Lithos, 2000, 51: 95-108. doi: 10.1016/S0024-4937(99)00076-6 |
[31] | Belousova E A, Griffin W L, O' Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143 (5): 602-622. doi: 10.1007/s00410-002-0364-7 |
[32] | Griffin W L, Belousova E A, Shee S R. Crustal Evolution in the northern Yilarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004, 131(3-4): 213-282. doi: 10.1016/j.precamres.2003.12.010 |
[33] | Hoskin P W O, Kinny P D, Whborn D, et al. Indentifying accessory mineral saturation during differentiation in granitoid magmas: An integrated approach[J]. Journal of Petrology, 2000, 41(9): 1365-1396. doi: 10.1093/petrology/41.9.1365 |
[34] | Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2 |
[35] | Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provenance indicatior[J]. Geology, 2000, 28(7): 627-630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2 |
[36] | Hoskin P W P. Trace-element composition of hydrothermal zircon and the alteration of hadean zircon from the Jack Hills, Australia[M]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006 |
[37] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 02: 185-220. Wu F Y, Li X H, Zheng Y F, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologic Sinica, 2007, 23(2): 185-220. |
[38] | Sun S S, Mcdonough W F. Chemical and isotopic systematics of ocean basalts: Impications for mantle composition and processes[M]. London: Geological Society of London and Blackwell Scientific Publications, 1989: 313-345. |
[39] | Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172: 5-24. |
[40] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. Wu Y B, Zheng Y F. Zircon genetic mineralogy and its constraints on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(16): 1589-1604. |
[41] | Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematic of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219: 311-324. doi: 10.1016/S0012-821X(04)00012-3 |
Geotectonic location of (a) the research area, and (b) its geological sketch map, and geological map of the Wunugetushan porphyry Cu-Mo deposit (Modified after Reference [13-14, 22])
Field photos and hand specimen photograph of the surrounding rock and ore-forming parent rock
Zircon CL images and age maps of surrounding rocks and ore-forming parent rocks in the mining area
Chondrite-normalized REE patterns (Normalization values after Reference [38])
εHf(t) versus age diagrams of unequal-grained monzogranite (WS05). Base image according to Reference[33]
εHf(t) versus age diagrams of rhyolite porphyritic lava (WS02). Base image according to Reference [33]