Citation: | LIU Jin, WANG Jian, WANG Guijun, ZHANG Xiaogang, SHANG Ling. Analysis of Mineralogical Characteristics of Leucosphenite from the Fengcheng Formation in the Junggar Basin by Electron Probe Microanalyzer and X-ray Diffractometer[J]. Rock and Mineral Analysis, 2022, 41(5): 764-773. doi: 10.15898/j.cnki.11-2131/td.202108190101 |
Leucosphenite, a borosilicate mineral with a biaxial monoclines crystal structure, is a typical hydrothermal mineral. The mineralogy of leucosphenite in the shale of the Fengcheng Formation in the Junggar Basin in China has not been studied, and its genesis is not clear.
To understand the mineralogical characteristics of leucosphenite in the Fengcheng Formation and its genesis.
Electron probe microanalysis (EPMA), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were used to analyze the mineral composition and crystal structure.
The crystal size of the leucosphenite in the Fengcheng Formation is at micron scale, and the morphology is plate-like or short columnar. Leucosphenite is associated with reedmergnerite. Leucosphenite is composed of 12.64% BaO, 13.47%TiO2, 10.69% Na2O, 53.46% SiO2, and 10.11% B2O3. Crystal planes corresponding to d=4.22(-220), d=8.45(-110), d=3.37(-112) are the three most developed planes.
The element composition and crystal diffraction characteristics of leucosphenite in the Fengcheng Formation are consistent with that found abroad, but the former is richer in B. Due to the obvious positive correlation between B content and salinity in the hydrothermal fluid, the leucosphenite of the Fengcheng Formation was formed in the hydrothermal fluid with higher salinity. Deep hydrothermal fluids intruded into the shale of the Fengcheng Formation, forming reedmergnerite and leucosphenite in turn.
[1] | 张龙, 陈振宇, 汪方跃, 等. 电子探针技术研究粤北龙华山岩体中独居石蚀变晕圈的结构与成分特征[J]. 岩矿测试, 2022, 41(2): 174-184. Zhang L, Chen Z Y, Wang F Y, et al. Application of electron probe microanalyzer to study the textures and compositions of alteration coronas of monazite from the Longhuashan granite, northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174-184. |
[2] | 闵红, 刘倩, 张金阳, 等. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征[J]. 岩矿测试, 2021, 40(1): 74-84. Min H, Liu Q, Zhang J Y, et al. Study on the mineralogical characteristics of 12 copper concentrates by X-ray fluorescence spectrometry, X-ray powder diffraction and polarization microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74-84. |
[3] | 张元元, 李威, 唐文斌. 玛湖凹陷风城组碱湖烃源岩发育的构造背景和形成环境[J]. 新疆石油地质, 2018, 39(1): 48-54. Zhang Y Y, Li W, Tang W B. Tectonic setting and environment of alkaline lacustrine source rocks in the lower Permian Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 48-54. |
[4] | 李威, 张元元, 倪敏婕, 等. 准噶尔盆地玛湖凹陷下二叠统古老碱湖成因探究: 来自全球碱湖沉积的启示[J]. 地质学报, 2020, 94(6): 1839-1852. doi: 10.3969/j.issn.0001-5717.2020.06.013 Li W, Zhang Y Y, Ni M J, et al. Genesis of alkaline lacustrine deposits in the lower Permian Fengcheng Formation of the Mahu Sag, northwestern Junggar Basin: Insights from a comparison with the worldwide alkaline lacustrine deposits[J]. Acta Geologica Sinica, 2020, 94(6): 1839-1852. doi: 10.3969/j.issn.0001-5717.2020.06.013 |
[5] | 秦玉娟, 余朝丰, 徐洋, 等. 应用电子探针原位微区分析技术测试硅硼钠石矿物[J]. 电子显微学报, 2016, 35(3): 217-222. doi: 10.3969/j.issn.1000-6281.2016.03.006 Qin Y J, Yu C F, Xu Y, et al. A microarea analysis technique of EPMA to probe reedmergnerite[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(3): 217-222. doi: 10.3969/j.issn.1000-6281.2016.03.006 |
[6] | 代鸿章, 王登红, 刘丽君, 等. 电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石[J]. 岩矿测试, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193 Dai H Z, Wang D H, Liu L J, et al. Study on emerald-level beryl from the Zhen'an W-Be polymetallic deposit in Shaanxi Province by electron probe microanalyzer and micro X-ray diffractometer[J]. Rock and Mineral Analysis, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193 |
[7] | 李萧, 劳海港, 胡秋媛, 等. 准噶尔盆地西北缘乌夏断裂带构造特征及物理模拟实验[J]. 石油实验地质, 2017, 39(4): 567-572. Li X, Lao H G, Hu Q Y, et al. Tectonic evolution and its physical simulation of Wuxia Fault Belt in the northwestern margin of Junggar Basin[J]. Petroleum Geology & Experiment, 2017, 39(4): 567-572. |
[8] | 蒋宜勤, 文华国, 祁利祺, 等. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物和成因分析[J]. 矿物岩石, 2012, 32(2): 105-114. Jiang Y Q, Wen H G, Qi L Q, et al. Salt minerals and their genesis of the Permian Fengcheng Formation in Urho area, Junggar Basin[J]. Journal of Mineralogy and Petrology, 2012, 32(2): 105-114. |
[9] | 汪梦诗, 张志杰, 周川闽, 等. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖岩石特征与成因[J]. 古地理学报, 2018, 20(1): 147-162. Wang M S, Zhang Z J, Zhou C M, et al. Lithological characteristics and origin of alkaline lacustrine of the lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(1): 147-162. |
[10] | 孙玉善. 中国西部地区首次发现硅硼钠石[J]. 石油与天然气地质, 1994, 15(3): 264-265. Sun Y S. Reedmergneite was first discovered in western China[J]. Oil & Gas Geology, 1994, 15(3): 264-265. |
[11] | 赵研, 郭佩, 鲁子野, 等. 准噶尔盆地下二叠统风城组硅硼钠石发育特征及其富集成因探讨[J]. 沉积学报, 2020, 38(5): 966-979. Zhao Y, Guo P, Lu Z Y, et al. Genesis of reedmergnerite in the lower Permian Fengcheng Formation of the Junggar Basin, NE China[J]. Acta Sedimentologic Sinica, 2020, 38(5): 966-979. |
[12] | 张志杰, 袁选俊, 汪梦诗, 等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J]. 石油勘探与开发, 2018, 45(6): 972-984. Zhang Z J, Yuan X J, Wang M S, et al. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 972-984. |
[13] | 郑庆华, 刘行军, 刘乔, 等. 利用偏光显微镜反射光系统观察黑色生油岩电子探针薄片中的生烃母质特征[J]. 岩矿测试, 2020, 39(3): 442-450. Zheng Q H, Liu X J, Liu Q, et al. A method for observation of characteristics of hydrocarbon generation materials in electron probe thin sections of black source rock by the reflected-light viewing system of a polarized optical microscope[J]. Rock and Mineral Analysis, 2020, 39(3): 442-450. |
[14] | 杨波, 杨莉, 孟文祥, 等. 利用探针片进行X射线粉晶衍射分析在白云鄂博矿床中的应用[J]. 有色金属(选矿部分), 2021(6): 34-42. Yang B, Yang L, Meng W X, et al. Application of X-ray powder diffraction analysis in Bayan Obo Deposit with microprobe slice[J]. Nonferrous Metals (Mineral Processing Section), 2021(6): 34-42. |
[15] | 张文兰, 胡欢, 谢磊, 等. Na元素的EPMA定量分析: 矿物晶体结构对Na行为的制约[J]. 高校地质学报, 2021, 27(3): 327-339. Zhang W L, Hu H, Xie L, et al. Quantitative analysis of Na by EPMA: Constraints for the Be avior of Na by the crystal structure[J]. Geological Journal of China Universities, 2021, 27(3): 327-339. |
[16] | Brumsack H J, Zuleger E. Boron and boron isotopes in pore waters from ODP Leg 127, Sea of Japan[J]. Earth and Planetary Science Letters, 1992, 113(3): 427-433. |
[17] | Spivack A J, Edmond J M. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 1987, 51(5): 1033-1043. |
[18] | 李方林. 两类不同矿床中Ba的地球化学特征及指示意义[J]. 地质科技情报, 1993, 12(3): 68-72. Li F L. Geochemical characteristics and indicatives significances of barium in two types of deposits[J]. Geological Science and Technology Information, 1993, 12(3): 68-72. |
[19] | 沈敢富, 李国武, 王凯怡, 等. 白云鄂博原型钡铁钛石晶体化学研究的新进展[J]. 地质学报, 2012, 86(5): 829-836. Shen G F, Li G W, Wang K Y, et al. Advances in crystal-chemistry study of type bafertisite from Bayan Obo, China[J]. Acta Geologica Sinica, 2012, 86(5): 829-836. |
[20] | 孙赛军, 廖仁强, 丛亚楠, 等. 钛的地球化学性质与成矿[J]. 岩石学报, 2020, 36(1): 68-76. Sun S J, Liao R Q, Cong Y N, et al. Geochemistry and mineralization of titanium[J]. Acta Petrologica Sinica, 2020, 36(1): 68-76. |
[21] | Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1-2): 1-16. |
[22] | 常海亮, 郑荣才, 郭春利, 等. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征[J]. 地质论评, 2016, 62(3): 550-568. Chang H L, Zheng R C, Guo C L, et al. Characteristics of rare earth elements of exhalative rock in Fengcheng Formation, northwestern margin of Jungger Basin[J]. Geological Review, 2016, 62(3): 550-568. |
[23] | 贾斌, 文华国, 李颖博, 等. 准噶尔盆地乌尔禾地区二叠系风城组盐类矿物流体包裹体特征[J]. 沉积与特提斯地质, 2015, 35(1): 33-42. Jia B, Wen H G, Li Y B, et al. Fluid inclusions in the salt minerals from the Permian Fengcheng Formation in the Urho region, Junggar Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2015, 35(1): 33-42. |
[24] | 傅饶, 郑荣才, 常海亮, 等. 湖相"白烟型"喷流岩-新型的致密油储层类型——以准噶尔盆地西缘乌尔禾地区风城组为例[J]. 岩性油气藏, 2015, 27(3): 32-42. Fu R, Zheng R C, Chang H L, et al. Lacustrine "white smoke type" exhalative rock—A new type of tight oil reservoir: A case study from lower Permian Fengcheng Formation in Urho area, western margin of Junggar Basin[J]. Lithologic Reservoirs, 2015, 27(3): 32-42. |
[25] | 郭顺. 俯冲-碰撞带硼循环[J]. 矿物岩石地球化学通报, 2021, 40(5): 1049-1060, 997. Guo S. Boron cycling in subduction-collision zones[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1049-1060, 997. |
[26] | 林秋婷, 陈晨, 刘海洋. 硼的地球化学性质及其在俯冲带的循环与成矿初探[J]. 岩石学报, 2020, 36(1): 5-12. Lin C T, Chen C, Liu H Y. Boron prospecting based on boron cycling in subduction zone[J]. Acta Petrologica Sinica, 2020, 36(1): 5-12. |
[27] | 张生, 陈根文, Seward T M, 等. 硼在共存水蒸气-富硼熔体之间分配的实验研究及其地质意义[J]. 地球化学, 2014, 43(6): 583-591. Zhang S, Chen G W, Seward T M, et al. Experimental study on boron distribution between coexisting water vapor and boron-rich melt and its geological implications[J]. Geochimica, 2014, 43(6): 583-591. |
[28] | 高媛, 王国芝, 李娜. 准噶尔盆地西北缘二叠系风城组硅质岩地球化学特征及成因[J]. 古地理学报, 2019, 21(4): 647-660. Gao Y, Wang G Z, Li N. Geochemical features and origin of siliceous rocks of the Permian Fengcheng Formation in the northwestern margin of Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(4): 647-660. |
(a) Sampling location and (b) stratigraphic histogram of the Fengcheng Formation of Maye1 well
Characteristics of leucosphenite in backscattered electron images
Element composition characteristics of leucosphenite based on EDS analysis
Element distribution characteristics of leucosphenite and reedmergnerite based on EPMA surface analysis
In situ X-ray diffraction characteristics of leucosphenite in the Fengcheng Formation, Junggar Basin
Formation model of alkali minerals such as leucosphenite in the Fengcheng Formation, Junggar Basin