Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

ZENG Jiangping, WANG Jiasong, ZHU Yue, ZHANG Nan, WANG Na, WU Liangying, WEI Shuang. Determination of 15 Rare Earth Elements in Uranium Ore by Open Acid Dissolution-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789-797. doi: 10.15898/j.cnki.11-2131/td.202112070197
Citation: ZENG Jiangping, WANG Jiasong, ZHU Yue, ZHANG Nan, WANG Na, WU Liangying, WEI Shuang. Determination of 15 Rare Earth Elements in Uranium Ore by Open Acid Dissolution-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789-797. doi: 10.15898/j.cnki.11-2131/td.202112070197

Determination of 15 Rare Earth Elements in Uranium Ore by Open Acid Dissolution-Inductively Coupled Plasma-Mass Spectrometry

More Information
  • BACKGROUND

    Studying the characteristics of rare earth elements in uranium ore can determine the source of the ore-forming fluids, the mineralization environment, and the physical and chemical conditions. It is particularly important to accurately determine the content of rare earth elements in uranium ore. At present, rare earth elements are mainly determined by inductively coupled plasma-mass spectrometry (ICP-MS). High-pressure closed acid-dissolution is commonly used. The open acid dissolution method is rarely used because perchloric acid is routinely used to dissolve samples, and the temperature is relatively low, which may cause incomplete decomposition of some samples.

    OBJECTIVES

    In order to solve the problem that the rare earth elements have contents lower than real values in open acid dissolution.

    METHODS

    The tetracid system of nitric acid-hydrofluoric acid-perchloric acid-sulfuric acid was used in the open acid dissolution method. ICP-MS with Rh as internal standard was used to determine 15 rare earth elements in uranium ore.

    RESULTS

    The relative standard deviation (RSD) of the 15 rare earth elements was between 0.54% and 5.98%, and the recovery was between 96.0% and 106.0%. Applying to national rock standard materials (GBW07103, GBW07104, GBW07122), the measured values were consistent with the standard values, and the relative error (RE) was between -8.33% and 7.24%, indicating that this method was effective for the determination of rare earth elements.

    CONCLUSIONS

    The method has simple operation, accurate and reliable results, and is suitable for the determination of rare earth elements in large quantities of uranium ore.

  • 加载中
  • [1] 余超. 辽北清原地区英云闪长岩年代学、地球化学特征及其地质意义[J]. 地质调查与研究, 2019, 42(1): 18-29.

    Google Scholar

    Yu C. Geochronological and geochemical characteristics of the tonalite and its geological implication in the Qinyuan area, northern Liaoning Province[J]. Geological Survey and Research, 2019, 42(1): 18-29.

    Google Scholar

    [2] 马风华, 张勇, 潘进礼, 等. 六盘山盆地白垩系马东山组泥页岩稀土元素地球化学特征及地质意义[J]. 地质论评, 2021, 67(1): 209-217.

    Google Scholar

    Ma F H, Zhang Y, Pan J L, et al. Geochemical characteristics of rare earth element and their geological significance of mud-shale in Cretaceous Madongshan Formation, Liupanshan Basin[J]. Geological Review, 2021, 67(1): 209-217.

    Google Scholar

    [3] 吴兴源, 刘晓阳, 周佐民, 等. 卢旺达Gatumba地区花岗伟晶岩的地质、地球化学特征及其成因研究综述[J]. 地质调查与研究, 2020, 43(1): 42-54.

    Google Scholar

    Wu X Y, Liu X Y, Zhou Z M, et al. Overview on geological, geochemical features and genesis of the granitic pegmatites in Gatumba area, Rwanda[J]. Geological Survey and Research, 2020, 43(1): 42-54.

    Google Scholar

    [4] 郑玉文, 陈友良, 常丹, 等. 若尔盖铀矿田510-1铀矿床稀土元素地球化学特征[J]. 四川冶金, 2019, 41(6): 13-18.

    Google Scholar

    Zheng Y W, Chen Y L, Chang D, et al. REE geochemical characteristics of the 510-1 uranium deposit in the Zoige uranium orefield[J]. Sichuan Metallurgy, 2019, 41(6): 13-18.

    Google Scholar

    [5] 胡妍, 胡永兴, 张翔, 等. 鄂尔多斯盆地西南缘镇原地区砂岩型铀矿元素地球化学特征及地质意义[J]. 现代地质, 2020, 34(6): 1153-1165.

    Google Scholar

    Hu Y, Hu Y X, Zhang X, et al. Geochmical features and geological significance of sandstone-type uranium deposit in Zhenyuan area, southwestern Ordos Basin[J]. Geosience, 2020, 34(6): 1153-1165.

    Google Scholar

    [6] 李杰, 黄宏业, 刘子杰, 等. 向阳坪铀矿床沥青铀矿微区原位LA-ICP-MS U-Pb年龄及稀土元素特征[J]. 地质科技通报, 2021, 40(1): 90-99.

    Google Scholar

    Li J, Huang H Y, Liu Z J, et al. In-situ U-Pb dating of pitchblende and the REE characteristics using LA-ICP-MS in Xiangyangping uranium deposit[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 90-99.

    Google Scholar

    [7] 李强, 马绍春. 云南东川大梁子铀矿床微量、稀土元素地球化学特征及其意义[J]. 铀矿地质, 2019, 35(3): 151-156.

    Google Scholar

    Li Q, Ma S C. Geochemical characteristics and significance of trace and rare earth elements of Daliangzi uranium deposit in Dongchua, Yunnan[J]. Uranium Geology, 2019, 35(3): 151-156.

    Google Scholar

    [8] 余关美, 时国. 赣中相山铀矿田基底变质岩稀土元素特征及其地质意义[J]. 东华理工大学学报(自然科学版), 2015, 38(4): 350-357.

    Google Scholar

    Yu G M, Shi G. Characteristics of rare earth elements and the geological significance of the basement metamorphic rocks in Xiangshan uranium ore field in central Jiangxi Province[J]. Journal of East China Institute of Technology (Natural Science), 2015, 38(4): 350-357.

    Google Scholar

    [9] 孙志峰, 张志刚, 张翼明, 等. 镝铁合金中稀土总量的测定——EDTA容量法[J]. 稀土, 2010, 31(1): 77-79.

    Google Scholar

    Sun Z F, Zhang Z G, Zhang Y M, et al. Determination of total rare earth contents in Dy-Fe alloy with EDTA volume method[J]. Chinese Rare Earths, 2010, 31(1): 77-79.

    Google Scholar

    [10] 龙旭东, 高立红, 张红, 等. EDTA滴定法测定稀土铝中间合金中稀土总量[J]. 冶金分析, 2020, 40(4): 70-75.

    Google Scholar

    Long X D, Gao L H, Zhang H, et al. Determination of total rare earths in intermediate alloy of rare earth aluminum by EDTA titration[J]. Metallurgical Analysis, 2020, 40(4): 70-75.

    Google Scholar

    [11] 刘叶平, 李艳峰, 高立红, 等. 重量法测定镧镍合金中稀土总量[J]. 冶金分析, 2019, 39(11): 24-29.

    Google Scholar

    Liu Y P, Li Y F, Gao L H, et al. Determination of total rare earth content in lanthanum-nickel alloy by gravimetric method[J]. Metallurgical Analysis, 2019, 39(11): 24-29.

    Google Scholar

    [12] 徐思婷, 施平. 草酸盐重量法测定有机溶液中稀土氧化物总量[J]. 材料研究与应用, 2017, 11(1): 55-58.

    Google Scholar

    Xu S T, Shi P. Determination of total rare earth oxide contents in organic solution with oxalate gravimetric method[J]. Materials Research and Application, 2017, 11(1): 55-58.

    Google Scholar

    [13] 夏峰林, 孔雪艳, 史秀梅. 分光光度法测定高放废液中的稀土总量[J]. 核化学与放射化学, 2020, 42(5): 371-377.

    Google Scholar

    Xia F L, Kong X Y, Shi X M. Determinaton of total rare earth in HLLW by spectrophotometry[J]. Journal of Nuclear and Radiochemistry, 2020, 42(5): 371-377.

    Google Scholar

    [14] 李志明. 原子吸收光谱法测定痕量铕[J]. 分析测试技术与仪器, 2003, 9(2): 91-94.

    Google Scholar

    Li Z M. Determination of trace europium by atomic absorption spectrometry[J]. Analysis and Testing Technology and Instruments, 2003, 9(2): 91-94.

    Google Scholar

    [15] 孙朝阳, 杨凯, 代小吕, 等. 电感耦合等离子体质谱(ICP-MS)法测定岩石中的稀土元素[J]. 中国无机分析化学, 2015, 5(4): 48-52.

    Google Scholar

    Sun C Y, Yang K, Dai X L, et al. Determination of rare earth elements in rock by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 48-52.

    Google Scholar

    [16] Shirai N, Toktaganov M, Takahashi H, et al. Multielemental analysis of Korean geological reference samples by INAA, ICP-AES and ICP-MS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303: 1367-1374.

    Google Scholar

    [17] Zhao W, Zong K Q, Liu Y S, et al. An effective oxide interference correction on Sc and REE for routine analyses of geological samples by inductively coupled plasma-mass spectrometry[J]. Journal of Earth Science, 2019, 30(6): 1302-1310.

    Google Scholar

    [18] 胡璇, 刘万超, 石磊. 电感耦合等离子体原子发射光谱法测定赤泥中6种稀土元素[J]. 理化检验(化学分册), 2017, 53(11): 1304-1307.

    Google Scholar

    Hu X, Liu W C, Shi L. ICP-AES determination of 6 rare earth elements in red mud[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(11): 1304-1307.

    Google Scholar

    [19] 陈绯宇, 张少夫, 温世杰. 电感耦合等离子体原子发射光谱法测定钇铁合金中14种稀土杂质元素[J]. 有色金属科学与工程, 2017, 8(6): 121-124.

    Google Scholar

    Chen F Y, Zhang S F, Wen S J. Determination of 14 rare earth elements in yttrium-iron alloy by inductively coupled plasma atomic emission spectrometry[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 121-124.

    Google Scholar

    [20] Serpil Y K, Eftade O G, Aysun D, et al. Determination of major and rare earth elements in bastnasite ores by ICP-AES[J]. Analytical Letters, 2004, 37(13): 2701-2709.

    Google Scholar

    [21] 李小莉, 张勤. 粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J]. 冶金分析, 2013, 33(7): 35-40.

    Google Scholar

    Li X L, Zhang Q. Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2013, 33(7): 35-40.

    Google Scholar

    [22] 周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305.

    Google Scholar

    Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305.

    Google Scholar

    [23] 任旭东, 聂成宏, 王振江, 等. 熔融制样-X射线荧光光谱法测定稀土铝中间合金中稀土元素[J]. 冶金分析, 2020, 40(3): 62-67.

    Google Scholar

    Ren X D, Nie C H, Wang Z J, et al. Determination of rare earth elements in rare earth-aluminum intermediate alloy by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2020, 40(3): 62-67.

    Google Scholar

    [24] 董学林, 何海洋, 储溱, 等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试, 2019, 38(6): 620-630.

    Google Scholar

    Dong X L, He H Y, Chu Q, et al. Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630.

    Google Scholar

    [25] 梁亚丽, 杨珍, 阿丽莉, 等. ICP-MS法测定钼矿石中伴生锂、镓和稀土元素[J]. 吉林大学学报(理学版), 2021, 59(2): 427-434.

    Google Scholar

    Liang Y L, Yang Z, A L L, et al. Determination of associated lithium, gallium and rare earth elements in molybdenum ore by inductively coupled mass spectrometry method[J]. Journal of Jilin University (Science Edition), 2021, 59(2): 427-434.

    Google Scholar

    [26] 王琳琳, 王力, 霍亮, 等. 电感耦合等离子体质谱法测定辉钼矿中稀土元素[J]. 世界地质, 2020, 39(3): 731-736.

    Google Scholar

    Wang L L, Wang L, Huo L, et al. Determination of rare earth element in molybdenite by ICP-MS[J]. Global Geology, 2020, 39(3): 731-736.

    Google Scholar

    [27] 戴雪峰, 蒋宗明, 杨利华. 电感耦合等离子体质谱(ICP-MS)法测定铜铅锌矿中稀土元素[J]. 中国无机分析化学, 2016, 6(1): 26-29.

    Google Scholar

    Dai X F, Jiang Z M, Yang L H. Determination of rare earth elements in copper, lead and zinc ores by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 26-29.

    Google Scholar

    [28] 李丽君, 王娜. 电感耦合等离子体质谱法测定高岭土中的15种稀土元素[J]. 理化检验(化学分册), 2017, 53(6): 689-692.

    Google Scholar

    Li L J, Wang N. Determination of 15 rare earth elements in kaolin by ICP-MS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(6): 689-692.

    Google Scholar

    [29] 张国玉, 王正其, 梁良. 相山、下庄铀矿田稀土元素特征对比[J]. 矿物岩石, 2006, 26(1): 64-68.

    Google Scholar

    Zhang G Y, Wang Z Q, Liang L. Correlation of REE features between Xiangshan and Xiazhuang uanium ore fields[J]. Mineral Petrology, 2006, 26(1): 64-68.

    Google Scholar

    [30] 刘斌, 陈卫锋, 方启春, 等. 相山铀矿田成矿流体特征: 来自微量、稀土元素地球化学证据[J]. 岩石学报, 2019, 35(9): 2774-2786.

    Google Scholar

    Liu B, Chen W F, Fang Q C, et al. Characteristics of ore-forming fluids in the Xiangshan uranium ore-field: Constraints from trace elements and rare earth elements[J]. Acta Petrologica Sinica, 2019, 35(9): 2774-2786.

    Google Scholar

    [31] 吴石头, 王亚平, 孙德忠, 等. 电感耦合等离子体发射光谱法测定稀土矿石中15种稀土元素——四种前处理方法的比较[J]. 岩矿测试, 2014, 33(1): 12-19.

    Google Scholar

    Wu S T, Wang Y P, Sun D Z, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry: A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1): 12-19.

    Google Scholar

    [32] 兰明国, 陆迁树, 张先昌. 溶样方法对电感耦合等离子体质谱法测定岩石和土壤中稀土元素的影响[J]. 冶金分析, 2018, 38(6): 31-38.

    Google Scholar

    Lan M G, Lu Q S, Zhang X C. Influence of sample dissolution method on determination of rare earth elements in rock and soil by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2018, 38(6): 31-38.

    Google Scholar

    [33] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348.

    Google Scholar

    Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340-348.

    Google Scholar

    [34] 尹庆红, 祝秀江, 栾进华, 等. 电感耦合等离子体质谱(ICP-MS)法测定页岩中稀土元素含量[J]. 中国无机分析化学, 2019, 9(3): 23-27.

    Google Scholar

    Yin Q H, Zhu X J, Luan J H, et al. Determination of rare earth elements in shale by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(3): 23-27.

    Google Scholar

    [35] 郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素[J]. 岩矿测试, 2014, 33(1): 25-28.

    Google Scholar

    Guo Z H, He H J, Tian F Y. Determination of rare earth elements in phosphate ores by inductively coupled plasma-mass spectrometry with mixed acid dissolution[J]. Rock and Mineral Analysis, 2014, 33(1): 25-28.

    Google Scholar

    [36] 吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39-45.

    Google Scholar

    Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdeum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39-45.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(5)

Article Metrics

Article views(1702) PDF downloads(160) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint