Citation: | ZHAO Linghao, ZHAN Xiuchun, ZENG Lingsen, HU Mingyue, SUN Dongyang, YUAN Jihai. Direct Calibration Method for LA-HR-ICP-MS Apatite U-Pb Dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744-753. doi: 10.15898/j.cnki.11-2131/td.202202260035 |
Apatite is a common U-bearing accessory mineral with a U-Pb closure temperature of ~500℃, making U-Pb dating of apatite a potentially valuable thermochronometer. However, its low U concentration, high common lead concentration and lack of reference material has limited widespread application to LA-ICP-MS dating.
To develop a technique for U-Pb dating of apatite using laser ablation sector field inductively coupled plasma-mass spectrometry (LA-HR-ICP-MS).
The U-Pb isotope ratio in apatite samples was determined by LA-HR-ICP-MS, with apatite MAD2 as the external standard to correct U-Pb and Pb-Pb elemental fractionation directly without a common Pb correction.
Long-term U-Pb analysis of Madagascar apatite sample (MAD2) showed homogeneous distribution of U, Pb and U-Pb isotope ratios, with average contents of U and Pb ~23.8×10-6 and ~13.5×10-6, respectively and weighted average 207Pb/206Pb and 206Pb/238U ratios of 0.0941±0.0006 and 0.0794±0.0004, respectively. Taking MAD2 apatite as a reference mineral, combined with 207Pb-correction method, the ages of apatite samples, McClure Mountain (521±5Ma), Tory-Hill-apt (1021±16Ma), a Durango (30.7±1.5Ma) and Fagnshan diorite apatite (~131Ma) can be determined accurately.
The Madagascar apatite sample (MAD2) can be used to calibrate apatite U-Pb isotope ratio measured by LA-ICP-MS directly, without common-Pb correction, similar to the calibration strategy in zircon U-Pb dating. The method greatly reduces the difficulty of data processing during apatite U-Pb dating by LA-ICP-MS, which is conducive to the wide application of the method.
[1] | Chew D M, Sylvester P J, Tubrett M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1): 200-216. |
[2] | Chew D M, Petrus J A, Kamber B S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 2014, 363: 185-199. doi: 10.1016/j.chemgeo.2013.11.006 |
[3] | Fisher C M, Bauer A M, Luo Y, et al. Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite—Improvements, potential reference materials, and application to the Archean Saglek Block gneisses[J]. Chemical Geology, 2020, 539: 119493. doi: 10.1016/j.chemgeo.2020.119493 |
[4] | Gregory C J, Rubatto D, Allen C M, et al. Allanite micro-geochronology: A LA-ICP-MS and SHRIMP U-Th-Pb study[J]. Chemical Geology, 2007, 245(3): 162-182. |
[5] | Li D, Tan C, Miao F, et al. Initiation of Zn-Pb mineralization in the Pingbao Pb-Zn skarn district, South China: Constraints from U-Pb dating of grossular-rich garnet[J]. Ore Geology Reviews, 2019, 107: 587-599. doi: 10.1016/j.oregeorev.2019.03.011 |
[6] | Sun J, Yang J, Wu F, et al. In situ U-Pb dating of titanite by LA-ICPMS[J]. Chinese Science Bulletin, 2012, 57(20): 2506-2516. doi: 10.1007/s11434-012-5177-0 |
[7] | Roberts N M W, Rasbury E T, Parrish R R, et al. A calcite reference material for LA-ICP-MS U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2807-2814. doi: 10.1002/2016GC006784 |
[8] | 赵令浩, 曾令森, 詹秀春, 等. 榍石LA-SF-ICP-MS U-Pb定年及对结晶和封闭温度的指示[J]. 岩石学报, 2020, 36(10): 2983-2994. Zhao L H, Zeng L S, Zhan X C, et al. In situ U-Pb dating of titanite by LA-SF-ICP-MS and insights into titanite crystallization and closure temperature[J]. Acta Petrologica Sinica, 2020, 36(10): 2983-2994. |
[9] | 周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857-864. Zhou H Y, Geng J Z, Cui Y R, et al. In situ U-Pb dating of apatite using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012, 33(6): 857-864. |
[10] | Engi M. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 365-418. doi: 10.2138/rmg.2017.83.12 |
[11] | Chew D M, Spikings R A. Apatite U-Pb thermochronology: A review[J]. Minerals, 2021, 11(10): 1095-1116. doi: 10.3390/min11101095 |
[12] | Kusebauch C, John T, Whitehouse M J, et al. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes[J]. Geochimica et Cosmochimica Acta, 2015, 170: 225-246. doi: 10.1016/j.gca.2015.08.023 |
[13] | O'Sullivan G, Chew D, Kenny G, et al. The trace ele-ment composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 2020, 201: 103044. doi: 10.1016/j.earscirev.2019.103044 |
[14] | Zeng L, Asimow P D, Saleeby J B. Coupling of Anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of Anatectic melts from a metasedimentary source[J]. Geochimica et Cosmochimica Acta, 2005, 69(14): 3671-3682. doi: 10.1016/j.gca.2005.02.035 |
[15] | Hammerli J, Kemp A I S, Spandler C. Neodymium iso-tope equilibration during crustal metamorphism revealed by in situ microanalysis of REE-rich accessory minerals[J]. Earth and Planetary Science Letters, 2014, 392: 133-142. doi: 10.1016/j.epsl.2014.02.018 |
[16] | Chu M F, Wang K L, Griffin W L, et al. Apatite Com-position: Tracing petrogenetic processes in transhimalayan granitoids[J]. Journal of Petrology, 2009, 50(10): 1829-1855. doi: 10.1093/petrology/egp054 |
[17] | Piccoli P M, Candela P A. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 255-292. doi: 10.2138/rmg.2002.48.6 |
[18] | Najman Y, Mark C, Barfod D N, et al. Spatial and tem-poral trends in exhumation of the eastern Himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal Fan[J]. GSA Bulletin, 2019, 131(9-10): 1607-1622. doi: 10.1130/B35031.1 |
[19] | Pochon A, Poujol M, Gloaguen E, et al. U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian—Carboniferous boundary in the Armorican Massif (France)[J]. American Mineralogist, 2016, 101: 2430-2442. doi: 10.2138/am-2016-5736 |
[20] | Liu W, Zhang J, Sun T, et al. Application of apatite U-Pb and fission-track double dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and Ningwu volcanic basins, eastern China[J]. Journal of Geochemical Exploration, 2014, 138: 22-32. doi: 10.1016/j.gexplo.2013.12.006 |
[21] | 刘敏, 宋世伟, 崔玉荣, 等. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究[J]. 岩石学报, 2021, 37(3): 717-732. Liu M, Song S W, Cui Y R, et al. In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W (Cu) ore of the Zhuxi tungsten deposit, northeastern Jiangxi Province[J]. Acta Petrologica Sinica, 2021, 37(3): 717-732. |
[22] | Wohlgemuth-Ueberwasser C, Tegner C, Pease V. LA-Q-ICP-MS apatite U/Pb geochronology using common Pb in plagioclase: Examples from layered mafic intrusions[J]. American Mineralogist, 2017, 102: 571-579. doi: 10.2138/am-2017-5903 |
[23] | Glorie S, Jepson G, Konopelko D, et al. Thermochronological and geochemical footprints of post-orogenic fluid alteration recorded in apatite: Implications for mineralisation in the Uzbek Tian Shan[J]. Gondwana Research, 2019, 71: 1-15. doi: 10.1016/j.gr.2019.01.011 |
[24] | Thomson S N, Gehrels G E, Ruiz J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): Q0AA21. |
[25] | Schoene B, Bowring S A. U-Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb[J]. Contributions to Mineralogy and Petrology, 2006, 151(5): 615. doi: 10.1007/s00410-006-0077-4 |
[26] | McDowell F W, McIntosh W C, Farley K A. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard[J]. Chemical Geology, 2005, 214(3): 249-263. |
[27] | Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x |
[28] | Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005 |
[29] | Aleinikoff J, Wintsch R, Tollo R, et al. Ages and origins of rocks of the Killingworth dome, south-central Connecticut: Implications for the tectonic evolution of southern New England[J]. American Journal of Science, 2007, 307: 63-118. doi: 10.2475/01.2007.04 |
[30] | Kennedy A K, Kamo S L, Nasdala L, et al. Grenville skarn titanite: Potential reference material for SIMS U-Th-Pb analysis[J]. The Canadian Mineralogist, 2010, 48(6): 1423-1443. doi: 10.3749/canmin.48.5.1423 |
[31] | Griffin W, Powell W, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS, in laser ablation-ICP-MS in the Earth sciences: Current practices and outstanding issues[M]//Sylvester P. Toronto: Mineralogical Association of Canada, 2008: 308-311. |
[32] | Ludwig K R. User's manual for Isoplot 3.6: A geo-chronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2003. |
[33] | Tera F, Wasserburg G J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in Lunar rocks[J]. Earth and Planetary Science Letters, 1972, 14(3): 281-304. doi: 10.1016/0012-821X(72)90128-8 |
[34] | Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221. doi: 10.1016/0012-821X(75)90088-6 |
[35] | Xu L, Yang J, Ni Q, et al. Determination of Sm-Nd isotopic compositions in fifteen geological materials using laser ablation MC-ICP-MS and application to monazite geochronology of metasedimentary rock in the North China Craton[J]. Geostandards and Geoanalytical Research, 2018, 42(3): 379-394. doi: 10.1111/ggr.12210 |
[36] | Cochrane R, Spikings R A, Chew D, et al. High temperature (>350℃) thermochronology and mechanisms of Pb loss in apatite[J]. Geochimica et Cosmochimica Acta, 2014, 127: 39-56. doi: 10.1016/j.gca.2013.11.028 |
[37] | 蔡建辉, 阎国翰, 牟保磊, 等. 北京房山岩体锆石U-Pb年龄和Sr、Nd、Pb同位素与微量元素特征及成因探讨[J]. 岩石学报, 2005, 21(3): 776-788. Cai J H, Yan G H, Mu B L, et al. Zircon U-Pb age, Sr-Nd-Pb isotopic compositions and trace element of Fangshan Complex in Beijing and their petrogenesis significance[J]. Acta Petrologica Sinica, 2005, 21(3): 776-788. |
[38] | Sun J F, Yang J H, Wu F Y, et al. Magma mixing con-trolling the origin of the early Cretaceous Fangshan granitic pluton, North China Craton: In situ U-Pb age and Sr-, Nd-, Hf- and O-isotope evidence[J]. Lithos, 2010, 120(3): 421-438. |
[39] | 桑海清, 王非, 贺怀宇, 等. 中国K-Ar法地质年龄标准物质ZBH-15黑云母的研制[J]. 矿物岩石地球化学通报, 2006, 25(3): 201-217. doi: 10.3969/j.issn.1007-2802.2006.03.001 Sang H Q, Wang F, He H Y, et al. Intercalibration of the ZBH-15 biotite reference material utilized for K-Ar and 40Ar-39Ar isotopic dating in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(3): 201-217. doi: 10.3969/j.issn.1007-2802.2006.03.001 |
[40] | 桑海清, 王非, 贺怀宇, 等. K-Ar法地质年龄标准物质ZBJ角闪石的定值结果[J]. 地质科学, 2007, 42(3): 532-557. doi: 10.3321/j.issn:0563-5020.2007.03.010 Sang H Q, Wang F, He H Y, et al. Certified results of the ZBJ hornblende reference materials for K-Ar and 40Ar-39Ar datings[J]. Chinese Hournal of Geology, 2007, 42(3): 532-557. doi: 10.3321/j.issn:0563-5020.2007.03.010 |
U-Pb isotope ratios for Madagascar apatite (MAD2) measured by LA-ICP-MS; (a) and (b) 207Pb/206Pb and 206Pb/238U ratios of monitoring sample NIST612; (c) and (d) calibrated 207Pb/206Pb and 206Pb/238U ratios of apatite MAD2; (e) and (f) Tera-Wasserburg diagram and the weighted average age of apatite MAD2
U-Pb dating of apatite by LA-ICP-MS with MAD2 apatite as the external standard. (a) and (b) McClure Mountain apatite; (c) and (d) Tory Hill-apt-1 apatite; (e) and (f) Durango apatite; (b), (d) and (f) 207Pb-corrected age
U-Pb dating of zircon, titanite and apatite in granodiorite sample 19FS-01 and 19FS-03 from Fangshan Pluton