Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

ZHANG Bo, SI Qinghong, Miao Peisen, ZHAO Hualei, ZHU Qiang, CHEN Yin, CHEN Lulu. Mineral Distribution Characteristics of the Pengyang Uranium Deposit Based on Near Infrared Core Spectral Scanning Technology[J]. Rock and Mineral Analysis, 2022, 41(5): 733-743. doi: 10.15898/j.cnki.11-2131/td.202112130202
Citation: ZHANG Bo, SI Qinghong, Miao Peisen, ZHAO Hualei, ZHU Qiang, CHEN Yin, CHEN Lulu. Mineral Distribution Characteristics of the Pengyang Uranium Deposit Based on Near Infrared Core Spectral Scanning Technology[J]. Rock and Mineral Analysis, 2022, 41(5): 733-743. doi: 10.15898/j.cnki.11-2131/td.202112130202

Mineral Distribution Characteristics of the Pengyang Uranium Deposit Based on Near Infrared Core Spectral Scanning Technology

More Information
  • BACKGROUND

    As an epigenetic deposit dominated by supergene fluid, a sandstone type uranium deposit has many low-temperature minerals. In recent years, the Pengyang uranium deposit, a deep sandstone type uranium deposit, has been discovered in the southwest edge of the Ordos Basin, China. The deposit has the characteristics of large sand body scale, wide uranium mineralization area, large thickness and high grade. Many low-temperature altered minerals have developed, including calcite, gypsum, pyrite, and clay minerals. It is of great significance to study the spatial distribution characteristics of minerals and their relationship with uranium minerals to identify the main sources and properties of ore-forming fluids and their controlling on uranium mineralization. Near-infrared core spectral scanning technology can identify layered silicate minerals such as kaolinite, montmorillonite, sericite, and sulfate minerals such as gypsum and alunite, and carbonate minerals such as calcite and dolomite.

    OBJECTIVES

    To study the distribution characteristics of minerals and their relationship with uranium mineralization.

    METHODS

    Core samples were scanned by VNIR-SWIR spectroscopy core scanning system and analyzed by TSG 8.0. In addition, the microscopic occurrence characteristics of minerals related to uranium minerals were observed by scanning electron microscopy.

    RESULTS

    Minerals such as kaolinite, montmorillonite, illite, chlorite, carbonate, gypsum, and iron oxide were identified in the Luohe Formation. The mineral assemblage of uranium ore section was "illite+gypsum+carbonate", and minor kaolinite was present locally.

    CONCLUSIONS

    The uranium-bearing section of the Luohe Formation is mainly a set of alkaline environments in the sedimentary period. However, there is also an injection of reducing acid fluid in the metallogenic period.

  • 加载中
  • [1] Jaireth S, Roach I C, Bastrakov E, et al. Basin-related uranium mineral systems in Australia: A review of critical features[J]. Ore Geology Reviews, 2015, 76: 360-394.

    Google Scholar

    [2] 张金带. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 2016, 32(6): 321-332. doi: 10.3969/j.issn.1000-0658.2016.06.001

    CrossRef Google Scholar

    Zhang J D. Innovation and development of metallogenic theory for sandstone type uranium deposit in China[J]. Uranium Geology, 2016, 32(6): 321-332. doi: 10.3969/j.issn.1000-0658.2016.06.001

    CrossRef Google Scholar

    [3] Jin R S, Miao P S, Sima X Z, et al. New prospecting progress using information and big data of coal and oil exploration holes on sandstone-type uranium deposit in North China[J]. China Geology, 2018, 1(1): 167-168. doi: 10.31035/cg2018017

    CrossRef Google Scholar

    [4] 李建国, 金若时, 张博, 等. 松辽盆地西南部上白垩统姚家组原生黏土矿物组合特征及其找铀意义[J]. 地球学报, 2018, 39(3): 48-58.

    Google Scholar

    Li J G, Jin R S, Zhang B, et al. Characteristics of primary clay minerals in the upper Cretaceous Yaojia Formation of southwest Songliao Basin and their significance[J]. Acta Geoscientica Sinica, 2018, 39(3): 48-58.

    Google Scholar

    [5] 张博, 李建国, 苗培森, 等. 开鲁盆地钱家店铀矿床铀的赋存状态及成因探讨[J]. 华北地质, 2021, 44(2): 40-48.

    Google Scholar

    Zhang B, Li J G, Miao P S, et al. The occurrence state and origin of uranium in Qianjiadian uranium deposit, Kailu Basin[J]. North China Geology, 2021, 44(2): 40-48.

    Google Scholar

    [6] 张世涛, 陈华勇, 韩金生, 等. 鄂东南铜绿山大型铜铁金矿床成矿岩体年代学、地球化学特征及成矿意义[J]. 地球化学, 2018, 47(3): 240-256.

    Google Scholar

    Zhang S T, Chen H Y, Han J S, et al. Geochronology, geochemistry, and mineralization of quartz monzodiorite and quartz monzodiorite porphyry in Tonglüshan Cu-Fe-Au deposit, Edongnan ore district, China[J]. Geochemical, 2018, 47(3): 240-256.

    Google Scholar

    [7] Thompson A J B, Hauff P L, Robitaille A J. Alteration mapping in exploration: Application of short wave infrared (SWIR) spectroscopy[J]. SEG Newsletter, 1999, 39: 16-27.

    Google Scholar

    [8] 修连存, 郑志忠, 俞正奎, 等. 近红外光谱分析技术在蚀变矿物鉴定中的应用[J]. 地质学报, 2007, 81(11): 1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013

    CrossRef Google Scholar

    Xiu L C, Zheng Z Z, Yu Z K, et al. Mineral analysis technology application with near infrared spectroscopy in identifying alteration mineral[J]. Acta Geologica Sinica, 2007, 81(11): 1584-1590. doi: 10.3321/j.issn:0001-5717.2007.11.013

    CrossRef Google Scholar

    [9] 修连存, 郑志忠, 俞正奎, 等. 近红外光谱仪测定岩石中蚀变矿物方法研究[J]. 岩矿测试, 2009, 28(6): 519-523. doi: 10.3969/j.issn.0254-5357.2009.06.004

    CrossRef Google Scholar

    Xiu L C, Zheng Z Z, Yu Z K, et al. Study on method of measuring altered minerals in rocks with near-infrared spectrometer[J]. Rock and Mineral Analysis, 2009, 28(6): 519-523. doi: 10.3969/j.issn.0254-5357.2009.06.004

    CrossRef Google Scholar

    [10] 燕守勋, 武晓波, 周朝宪, 等. 遥感和光谱地质进展及其对矿产勘查的实践应用[J]. 地球科学进展, 2011, 26(1): 13-29.

    Google Scholar

    Yan S X, Wu X B, Zhou C X, et al. Remote sensing and spectral geology and their applications to mineral exploration[J]. Advances in Earth Science, 2011, 26(1): 13-29.

    Google Scholar

    [11] 卢燕, 杨凯, 修连存. 基于近红外光谱技术的烃类与粘土矿物识别及其地质意义[J]. 地质通报, 2017, 36(10): 1884-1891.

    Google Scholar

    Lu Y, Yang K, Xiu L C. Identification of hydrocarbon and clay minerals based on near-infrared spectroscopy and its geological significance[J]. Geological Bulletin of China, 2017, 36(10): 1884-1891.

    Google Scholar

    [12] 郭娜, 史维鑫, 黄一入, 等. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图——勘查模型构建[J]. 地质通报, 2018, 37(2-3): 446-457.

    Google Scholar

    Guo N, Shi W X, Huang Y R, et al. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit af the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique[J]. Geological Bulletin of China, 2018, 37(2/3): 446-457.

    Google Scholar

    [13] 刘新星, 张弘, 张娟, 等. 基于红外光谱技术的内蒙古乌奴格吐山斑岩铜钼矿蚀变和矿化特征研究[J]. 岩矿测试, 2021, 40(1): 121-133.

    Google Scholar

    Liu X X, Zhang H, Zhang J, et al. A study on alteration mineral assemblages and mineralization characteristics of a Wunugetushan porphyry copper-molybdenum deposit in Inner Mongolia, China, based on infrared spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 121-133.

    Google Scholar

    [14] 苗培森, 张博, 张红亮, 等. 砂岩型铀矿蚀变矿物研究中的岩心光谱扫描技术[J]. 地质调查与研究, 2017, 40(3): 210-218.

    Google Scholar

    Miao P S, Zhang B, Zhang H L, et al. Automated drill core spectral scanning technique in the study of altered minerals in sandstone-type uranium deposits[J]. Geological Survey and Research, 2017, 40(3): 210-218.

    Google Scholar

    [15] 侯腱膨, 徐清俊, 叶发旺, 等. 新疆白杨河铀矿床钻孔岩芯蚀变分带特征及地质意义[J]. 中国地质, 2018, 45(4): 839-850.

    Google Scholar

    Hou J P, Xu Q J, Ye F W, et al. Alteration zonation of drilling cores in the Baiyanghe uranium deposit of Xinjiang and its geological implications[J]. Geology in China, 2018, 45(4): 839-850.

    Google Scholar

    [16] 史维鑫, 易锦俊, 王浩, 等. 马坑铁矿钻孔岩心红外光谱特征及蚀变分带特征研究[J]. 岩矿测试, 2020, 39(6): 934-943.

    Google Scholar

    Shi W X, Yi J J, Wang H, et al. Study on the characteristics of the infrared spectrum and the alteration zoning of drill core in the Makeng iron deposit[J]. Rock and Mineral Analysis, 2020, 39(6): 934-943.

    Google Scholar

    [17] 李晶, 祁进平, 修连存, 等. 岩芯光谱扫描仪在紫金山矿产勘查中的应用[J]. 矿物学报, 2013, 33(S2): 1020-1021.

    Google Scholar

    Li J, Qi J P, Xiu L C, et al. Application of core spectral scanner in Zijin mountain mineral exploration[J]. Acta Mineralogical Sinica, 2013, 33(S2): 1020-1021.

    Google Scholar

    [18] 陈华勇, 张世涛, 初高彬, 等. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用[J]. 岩石学报, 2019, 35(12): 3629-3643.

    Google Scholar

    Chen H Y, Zhang S T, Chu G B, et al. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China[J]. Acta Petrologica Sinica, 2019, 35(12): 3629-3643.

    Google Scholar

    [19] 苗培森, 陈印, 程银行, 等. 中国北方砂岩型铀矿深部探测新发现及其意义[J]. 大地构造与成矿学, 2020, 44(4): 563-575.

    Google Scholar

    Miao P S, Chen Y, Cheng Y H, et al. New deep exploration discoveries of sandstone-type uranium deposits in North China[J]. Geotectonica et Metallogenia, 2020, 44(4): 563-575.

    Google Scholar

    [20] 朱强, 李建国, 苗培森, 等. 鄂尔多斯盆地西南部洛河组储层特征和深部铀成矿地质条件[J]. 地球科学与环境学报, 2019, 41(6): 675-690.

    Google Scholar

    Zhu Q, Li J G, Miao P S, et al. Reservoir characteristics of Luohe Formation and metallogenic geological conditions of deep uranium in the south western margin of Ordos Basin, China[J]. Journal of Earth Sciences and Environment, 2019, 41(6): 675-690.

    Google Scholar

    [21] 邓军, 王庆飞, 高帮飞, 等. 鄂尔多斯盆地演化与多种能源矿产分布[J]. 现代地质, 2005, 19(4): 538-545.

    Google Scholar

    Deng J, Wang Q F, Gao B F, et al. Evolution of Ordos Basin and its distribution of various energy resources[J]. Geoscience, 2005, 19(4): 538-545.

    Google Scholar

    [22] 刘池洋, 赵红格, 谭成仟, 等. 多种能源矿产赋存与盆地成藏(矿)系统[J]. 石油与天然气地质, 2006, 27(2): 131-142.

    Google Scholar

    Liu C Y, Zhao H G, Tan C Q, et al. Occurrences of multiple energy mineral deposits and mineralization reservoiring system in the basin[J]. Oil & Gas Geology, 2006, 27(2): 131-142.

    Google Scholar

    [23] 刘池洋, 赵红格, 王锋, 等. 鄂尔多斯盆地西缘(部)中生代构造属性[J]. 地质学报, 2005, 79(6): 738-747.

    Google Scholar

    Liu C Y, Zhao H G, Wang F, et al. Attributes of the mesozoic structure on the west margin of the Ordos Basin[J]. Acta Geologica Sinica, 2005, 79(6): 738-747.

    Google Scholar

    [24] 杨晓勇, 凌明星, 赖小东, 等. 鄂尔多斯盆地东胜—黄龙地区砂岩型铀矿铀矿物赋存状态研究[J]. 地质学报, 2009, 83(8): 1167-1177.

    Google Scholar

    Yang X Y, Ling M X, Lai X D, et al. Study on uranium mineral occurrence of sandstone-type uranium deposits in Dongsheng—Huang region, the Ordos Basin[J]. Acta Geologica Sinica, 2009, 83(8): 1167-1177.

    Google Scholar

    [25] 魏斌, 张忠义, 杨友运. 鄂尔多斯盆地白垩系洛河组至环河—华池组沉积相特征研究[J]. 地层学杂志, 2006, 30(4): 367-372.

    Google Scholar

    Wei B, Zhang Z Y, Yang Y Y, et al. Sedimentary facies of the cretaceous Luohe and Huanhe—Huachi Formations in the Ordos Basin[J]. Journal of Stratigraphy, 2006, 30(4): 367-372.

    Google Scholar

    [26] 张字龙, 范洪海, 贺锋, 等. 鄂尔多斯盆地西南缘下白垩统铀成矿条件分析[J]. 铀矿地质, 2018, 34(4): 193-200.

    Google Scholar

    Zhang Z L, Fan H H, He F, et al. Analysis of sandstone type uranium metallogenic conditions of lower Cretaceous in the southwest margin of Ordos Basin[J]. Uranium Geology, 2018, 34(4): 193-200.

    Google Scholar

    [27] Zhao H L, Ao C, Li J G, et al. Occurrence and mech-anism of uranium enrichment with a unique eolian sedimental environment in the Pengyang uranium deposit, Ordos Basin[J]. Ore Geology Reviews, 2022, 141, https://doi.org/10.1016/j.oregeorev.2021.104641. doi: 10.1016/j.oregeorev.2021.104641

    CrossRef Google Scholar

    [28] Xing L D, Lockley M G, Tang Y Z, et al. Tetrapod track assemblages from lower Cretaceous desert facies in the Ordos Basin, Shanxi Province, China, and their implications for Mesozoic paleoecology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 507: 1-14.

    Google Scholar

    [29] Laukamp C, Caccetta M, Chia J, et al. The uses, abuses and opportunities for hyperspectral technologies and derived geoscience information[C]//Proceedings of Geo-computing Conference Brisbane: AIG Bulletin, 2010: 73-76.

    Google Scholar

    [30] 郭娜, 黄一入, 郑龙, 等. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型[J]. 地球学报, 2017, 38(5): 767-778.

    Google Scholar

    Guo N, Huang Y R, Zheng L, et al. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits[J]. Acta Geoscientic Sinina, 2017, 38(5): 767-778.

    Google Scholar

    [31] Yang K, Whitbourn L, Mason P. Mapping the chemical composition of nickel laterites with reflectance spectroscopy at Koniambo, New Caledonia[J]. Economic Geology, 2013, 108(6): 1285-1299.

    Google Scholar

    [32] 徐清俊, 叶发旺, 张川, 等. ASD地面光谱仪在新疆白杨河铀矿床蚀变信息研究中的应用[J]. 铀矿地质, 2016, 32(3): 186-191.

    Google Scholar

    Xu Q J, Ye F W, Zhang C, et al. Application of ASD spectrometer to the study of alteration information in Baiyanghe uranium deposit, Xinjiang[J]. Uranium Deposit, 2016, 32(3): 186-191.

    Google Scholar

    [33] 王润生, 甘甫平, 闫柏琨, 等. 高光谱矿物填图技术与应用研究[J]. 国土资源遥感, 2010, 22(1): 1-13.

    Google Scholar

    Wang R S, Gan F P, Yan B K, et al. Hyperspectral mineral mapping and its application[J]. Remote Sensing for Land & Resources, 2010, 22(1): 1-13.

    Google Scholar

    [34] 张天福, 张云, 金若时, 等. 鄂尔多斯盆地东北缘侏罗系层序界面特征对砂岩型铀矿成矿环境的制约[J]. 中国地质, 2020, 47(2): 278-299.

    Google Scholar

    Zhang T F, Zhang Y, Jin R S, et al. Characteristics of Jurassic sequence boundary surfaces on the northeastern margin of Ordos Basin and their constraints on the spatial-temporal properties of sandstone uranium mineralization[J]. Geology in China, 2020, 47(2): 278-299.

    Google Scholar

    [35] 张川, 叶发旺, 徐清俊, 等. 相山铀矿田西部深钻岩心成像光谱编录及蚀变分带特征[J]. 国土资源遥感, 2019, 31(2): 231-239.

    Google Scholar

    Zhang C, Ye F W, Xu Q J, et al. Deep drill logging and its alteration zoning features based on hyperspectral core imaging in west of Xiangshan uranium orefield[J]. Remole Sensing for Land and Resources, 2019, 31(2): 231-239.

    Google Scholar

    [36] 彭自栋, 申俊峰, 曹卫东, 等. 蚀变矿物近红外光谱特征对地质找矿的指示意义——以甘肃岗岔金矿为例[J]. 地质通报, 2016, 35(5): 822-831.

    Google Scholar

    Peng Z D, Shen J F, Cao W D, et al. The application of near-infrared spectroscopy to identify altered minerals and its implications for geologic prospecting: A case study of the Gangcha gold deposit in Gansu Province[J]. Geological Bulletin of China, 2016, 35(5): 822-831.

    Google Scholar

    [37] 李建国, 张博, 金若时, 等. 钱家店铀矿床表生含氧含铀流体与深层酸性含烃流体的耦合成矿作用[J]. 大地构造与成矿学, 2020, 44(4): 576-589.

    Google Scholar

    Li J G, Zhang B, Jin R S, et al. Uranium mineralization of coupled supergene oxygen-uranium bearing fluids and deep acidic hydrocarbon bearing fluids in the Qianjiadian uranium deposit, Kailu Basin[J]. Geotectonica et Metallogenia, 2020, 44(4): 576-589.

    Google Scholar

    [38] Si Q H, Li J G, Miao P S, et al. Characteristics and mechanism of hydrocarbon alteration of faded sandstone in the uranium-bearing Luohe Formation, Pengyang area, southwest Ordos Basin[J]. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2021.104500. doi: 10.1016/j.oregeorev.2021.104500

    CrossRef Google Scholar

    [39] Gingele F X, de Deckker P D, Norman M. Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited off shore the River Murray Mouth[J]. Earth and Planetary Science Letters, 2007, 255: 257-272.

    Google Scholar

    [40] 孙庆峰, Christophe C, 陈发虎, 等. 气候环境变化研究中影响黏土矿物形成及其丰度因素的讨论[J]. 岩石矿物学杂志, 2011, 30(2): 291-300.

    Google Scholar

    Sun Q F, Christophe C, Chen F H, et al. A discussion on the factors affecting formation and quantity of clay minerals in climatic and environmental researches[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 291-300.

    Google Scholar

    [41] 谢渊, 李令喜, 谢正温, 等. 鄂尔多斯盆地白垩系石膏类矿物分布特征及其对地下水水化学类型和水质的影响[J]. 水文地质工程地质, 2008(S): 55-62.

    Google Scholar

    Xie Y, Li L X, Xie Z W, et al. Distribution of gypsum and its effect on the groundwater hydrochemical type and quality of the Cretaceous in Ordos Basin[J]. Hydrogeology & Engineering Geology, 2008(S): 55-62.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(2156) PDF downloads(149) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint