Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

ZHANG Wenlan, HU Huan, LIU Peng, CHEN Xiaodan. Electron Probe Quantitative Analysis of HREE-V-Aluminosilicate Minerals[J]. Rock and Mineral Analysis, 2022, 41(5): 754-763. doi: 10.15898/j.cnki.11-2131/td.202110250155
Citation: ZHANG Wenlan, HU Huan, LIU Peng, CHEN Xiaodan. Electron Probe Quantitative Analysis of HREE-V-Aluminosilicate Minerals[J]. Rock and Mineral Analysis, 2022, 41(5): 754-763. doi: 10.15898/j.cnki.11-2131/td.202110250155

Electron Probe Quantitative Analysis of HREE-V-Aluminosilicate Minerals

  • BACKGROUND

    Jingwenite, Y2Al2V24+(SiO4)2O4(OH)4), from Yushui Copper Mine, Meizhou City, Guangdong Province, is a type of HREE-V hydrated aluminosilicate minerals. Since its discovery, no research has been done. During electron probe microanalysis (EPMA) for HREE minerals, many characteristic X-ray lines are excited when samples are bombarded by a high-voltage electron beam. The lines are not only numerous, but also seriously overlap with each other. It is very difficult to obtain optimal data, and it is a technical problem that needs to be solved.

    OBJECTIVES

    To obtain ideal chemical composition data by fine quantitative analysis of the mineral by EPMA to provide theoretical data technical support for the naming of the new mineral.

    METHODS

    Full element wave spectrum scanning for Jingwenite by JEOL JXA-8530F Plus.

    RESULTS

    (1) 17 elements were identified by wave dispersive scanning with an accelerating voltage of 15kV and a beam current of 100nA; (2) Stripping overlapped peak during the quantitative analysis; (3) Peak positions, upper and lower background values of 17 elements were set by Zoom-Peak ID program in quantitative analysis; (4) The ideal quantitative analysis results (total 97.41wt%) were obtained by selecting appropriate standard samples and testing dwell time.

    CONCLUSIONS

    The above four items are key factors to ensure ideal quantitative analysis data.

  • 加载中
  • [1] 赵芝, 付小方, 任希杰, 等. 四川稀土精矿的稀土元素和微量元素地球化学特征及开发利用意义[J]. 岩矿测试, 2013, 32(5): 810-816. doi: 10.3969/j.issn.0254-5357.2013.05.022

    CrossRef Google Scholar

    Zhao Z, Fu X F, Ren X J, et al. Geochemistry of rare earth and trace elements in rare earth concentrate from Sichuan Province and the significance of the exploitation and utilization[J]. Rock and Mineral Analysis, 2013, 32(5): 810-816. doi: 10.3969/j.issn.0254-5357.2013.05.022

    CrossRef Google Scholar

    [2] 张轰玉, 杨占峰, 焦登铭, 等. 白云鄂博主矿霓石型铌稀土铁矿石中铌在独立矿物中的富集状态和分布规律研究[J]. 有色金属(选矿部分), 2020(1): 6-12. doi: 10.3969/j.issn.1671-9492.2020.01.002

    CrossRef Google Scholar

    Zhang H Y, Yang Z F, Jiao D M, et al. Distribution regularity and enrichment state of niobium in independent minerals in aegirine-type niobium rare earth iron ore in Bayan Obo main mine[J]. Nonferrous Metals (Mineral Processing Section), 2020(1): 6-12. doi: 10.3969/j.issn.1671-9492.2020.01.002

    CrossRef Google Scholar

    [3] 杨晓勇, 赖小东, 任伊苏, 等. 白云鄂博铁-稀土-铌矿床地质特征及其研究中存在的科学问题——兼论白云鄂博超大型矿床的成因[J]. 地质学报, 2015, 89(12): 2323-2350. doi: 10.3969/j.issn.0001-5717.2015.12.010

    CrossRef Google Scholar

    Yang X Y, Lai X D, Ren Y S, et al. Geological characteristics and their scientific problems of the Bayan Obo Fe-REE-Nb deposit: Discussion on the origin of Bayan Obo super-large deposit[J]. Acta Geologica Sinica, 2015, 89(12): 2323-2350. doi: 10.3969/j.issn.0001-5717.2015.12.010

    CrossRef Google Scholar

    [4] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669.

    Google Scholar

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669.

    Google Scholar

    [5] 王登红, 赵芝, 于扬, 等. 离子吸附型稀土资源研究进展、存在问题及今后研究方向[J]. 岩矿测试, 2013, 32(5): 796-802. doi: 10.3969/j.issn.0254-5357.2013.05.020

    CrossRef Google Scholar

    Wang D H, Zhao Z, Yu Y, et al. Progress, problems and research orientation of ion-adsorption type rare earth resources[J]. Rock and Mineral Analysis, 2013, 32(5): 796-802. doi: 10.3969/j.issn.0254-5357.2013.05.020

    CrossRef Google Scholar

    [6] 邓茂春, 王登红, 曾载淋, 等. 风化壳离子吸附型稀土矿圈矿方法评价[J]. 岩矿测试, 2013, 32(5): 803-809. doi: 10.3969/j.issn.0254-5357.2013.05.021

    CrossRef Google Scholar

    Deng M C, Wang D H, Zeng Z L, et al. Evaluation on delineation methods for ion-adsorption type rare earth ore body[J]. Rock and Mineral Analysis, 2013, 32(5): 803-809. doi: 10.3969/j.issn.0254-5357.2013.05.021

    CrossRef Google Scholar

    [7] Liu P, Gu X P, Zhang W L, et al. Jingwenite-(Y), IMA 2021-070: CNMNC Newsletter 64[J]. Mineralogical Magazine, 2022, 34(1): 1-6.

    Google Scholar

    [8] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145-155.

    Google Scholar

    Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155.

    Google Scholar

    [9] Smith M, Kynicky J, Xu C, et al. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu District, China[J]. Lithos, 2018, 308-309: 65-82. doi: 10.1016/j.lithos.2018.02.027

    CrossRef Google Scholar

    [10] 强山峰, 毕诗健, 邓晓东, 等. 豫西小秦岭地区秦南金矿床热液独居石U-Th-Pb定年及其地质意义[J]. 地球科学——中国地质大学学报, 2013, 38(1): 43-56.

    Google Scholar

    Qiang S F, Bi S J, Deng X D, et al. Monazite U-Th-Pb ages of the Qinnan gold deposit, Xiaoqinling District: Implications for regional metallogenesis and tectonic setting[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(1): 43-56.

    Google Scholar

    [11] Pyle J M, Spear F S, Wark D A, et al. Contributions to precision and accuracy of monazite microprobe ages[J]. American Mineralogist, 2005, 90: 547-577. doi: 10.2138/am.2005.1340

    CrossRef Google Scholar

    [12] Asami M, Suzuki K, Grew E S. Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier Complex, east Antarctica: Evidence for ultra-high-temperature metamorphism at 2400Ma[J]. Precambrian Research, 2002, 114: 249-275. doi: 10.1016/S0301-9268(01)00228-5

    CrossRef Google Scholar

    [13] Pyle J M, Spear F S, Wark D A. Electron microprobe analysis of REE in apatite, monazite and xenotime: Protocols and pitfalls[J]//Kohn M J, Rakovan J, Hughes J M. Phosphates: Geochemical, geobiological, and materials importance. Reviews in mineralogy and geochemistry, 2002, 48: 337-362.

    Google Scholar

    [14] Michael J J, Michael L W, Edward D. Lane in-situ trace element analysis of monazite and other fine-grained accessory minerals by EPMA[J]. Chemical Geology, 2008, 254: 97-215.

    Google Scholar

    [15] Chen A P, Yang J J, Zhong D L, et al. Epidote spherulites and radial euhedral epidote aggregates in a greenschist facies metavolcanic breccia hosting an UHP eclogite in Dabieshan (China): Implication for dynamic metamorphism[J]. American Mineralogist, 2019, 104: 1197-1212.

    Google Scholar

    [16] 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679.

    Google Scholar

    Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679.

    Google Scholar

    [17] 姚立, 田地, 梁细荣, 等. 电子探针背景扣除和谱线干扰修正方法的进展[J]. 岩矿测试, 2008, 27(1): 49-54.

    Google Scholar

    Yao L, Tian D, Liang X R, et al. Progress in background subtraction and spectral interference correction in electron probe microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54.

    Google Scholar

    [18] 陈懋弘, 柯昌辉, 田永飞, 等. 浅海环境下的喷流沉积块状硫化物矿床——以广东玉水铜矿为例[J]. 地质学报, 2021, 95(6): 1774-1791.

    Google Scholar

    Chen M H, Ke C H, Tian Y F, et al. Sedimentary-exhalative massive sulfide deposits in shallow marine environment: A case study from Yushui copper deposit, Guangdong Province[J]. Acta Geologica Sinica, 2021, 95(6): 1774-1791.

    Google Scholar

    [19] 何耀基. 广东梅县玉水热液沉积多金属矿床的成矿地质特征[J]. 广东地质, 1990, 3(1): 1-13.

    Google Scholar

    He Y J. Metallogenic-geologic characteristics of Yushui hydrothermal-sedimentary polymetallic deposit in Meixian County, Guangdong Province[J]. Guangdong Geology, 1990, 3(1): 1-13.

    Google Scholar

    [20] Stormer J C, Pierson M J, Tacker R C. Variation of F and Cl X-ray intensity due to anisotropic diffusion of apatite during electron microprobe analysis[J]. American Mineralogist, 1993, 78: 641-648.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(2032) PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint