Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 4
Article Contents

LI Xuanbo, WANG Ruimin, HUANG Tianzheng, SHUAI Gewei, SHEN Bing. Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province[J]. Rock and Mineral Analysis, 2022, 41(4): 531-540. doi: 10.15898/j.cnki.11-2131/td.202202210026
Citation: LI Xuanbo, WANG Ruimin, HUANG Tianzheng, SHUAI Gewei, SHEN Bing. Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province[J]. Rock and Mineral Analysis, 2022, 41(4): 531-540. doi: 10.15898/j.cnki.11-2131/td.202202210026

Sulfur Isotopic Analysis and Sulfur Source Study of Phosphorite-associated Sulfate from the Ediacaran Doushantuo Formation in Guizhou Province

More Information
  • BACKGROUND

    Phosphate deposit of the Ediacaran Doushantuo Formation in Guizhou province is a typical representative of the global phosphorite formation event in the late Neoproterozoic, which is closely related to climate change and evolution of life. However, the current research on the deposition of phosphorus deposits is limited to the mechanism of phosphorus formation and the source of phosphorus, and research on the phosphorus formation process of this deposit and its correlation with the paleo-ocean environment of the same period by isotopic geochemical indicators is relatively weak.

    OBJECTIVES

    In order to determine the sulfur source of phosphorite-associated sulfate.

    METHODS

    Based on the field section observation and the study of petrological characteristics under the microscope, elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) was used to measure the sulfur isotopic composition of phosphorite-associated sulfate from the Ediacaran Doushantuo Formation. RESULTS: The sulfur isotopic composition of phosphorite-associated sulfate ranged from 32.7‰ to 36.9‰ (n=32, mean=34.1‰), which was 11‰ lower than that of the seawater of the same period, indicating that the phosphorite-associated sulfate was not all from the surface seawater.

    CONCLUSIONS

    The idealized early ocean (>520Ma) chemical zoning model indicates that there is a relatively 34S-depleted H2S zone in the seawater at the same time. Combined with the understanding that the source of phosphorus in the phosphorite is closely related to the upwelling, it can be considered that the sulfur isotopic composition of phosphorite-associated sulfate of the Doushantuo Formation represents the mixed signal of surface seawater and upwelling.

  • 加载中
  • [1] 张亚冠, 杜远生, 刘建中, 等. 贵州震旦系陡山沱组磷块岩成磷作用及与新元古代末期氧化事件(NOE)的耦合[J]. 古地理学报, 2020, 22(5): 893-912.

    Google Scholar

    Zhang Y G, Du Y S, Liu J Z, et al. Phosphogenesis of phosphorite from the Sinian Doushantuo Formation in Guizhou Province and its coupling relation with the Neoproterozoic Oxygenation Event (NOE)[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(5): 893-912.

    Google Scholar

    [2] Filippelli G M. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective[J]. Chemosphere, 2011, 84(6): 759-766. doi: 10.1016/j.chemosphere.2011.02.019

    CrossRef Google Scholar

    [3] Anderson R P, Macdonald F A, Jones D S, et al. Doushantuo-type microfossils from latest Ediacaran phosphorites of northern Mongolia[J]. Geology, 2017, 45(12): 1079-1082. doi: 10.1130/G39576.1

    CrossRef Google Scholar

    [4] Pufahl P K, Hiatt E E. Oxygenation of the Earth's atmosphere-ocean system; a review of physical and chemical sedimentologic responses[J]. Marine and Petroleum Geology, 2012, 32(1): 1-20. doi: 10.1016/j.marpetgeo.2011.12.002

    CrossRef Google Scholar

    [5] Pufahl P K, Groat L A. Sedimentary and igneous phosphate deposits; formation and exploration; an invited paper[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2017, 112(3): 483-516. doi: 10.2113/econgeo.112.3.483

    CrossRef Google Scholar

    [6] Hiatt E E, Pufahl P K, Edwards C T. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85Ga Michigamme Formation, Michigan, USA[J]. Sedimentary Geology, 2015, 319: 24-39. doi: 10.1016/j.sedgeo.2015.01.006

    CrossRef Google Scholar

    [7] Caird R A, Pufahl P K, Hiatt E E, et al. Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation, Brazil; phosphogenesis during the Neoproterozoic Oxygenation Event[J]. Sedimentary Geology, 2017, 350: 55-71. doi: 10.1016/j.sedgeo.2017.01.005

    CrossRef Google Scholar

    [8] 王志罡, 谢宏, 杨旭, 等. 贵州铜仁坝黄磷矿中铀赋存状态的逐级化学提取研究[J]. 岩矿测试, 2018, 37(3): 256-265.

    Google Scholar

    Wang Z G, Xie H, Yang X, et al. Stepwise extraction study on the occurrence of uranium in Tongren Bahuang Phosphorite, Guizhou[J]. Rock and Mineral Analysis, 2018, 37(3): 256-265.

    Google Scholar

    [9] Baturin G N. The origin of marine phosphorites[J]. International Geology Review, 1989, 31(4): 327-342. doi: 10.1080/00206818909465885

    CrossRef Google Scholar

    [10] 张亚冠, 杜远生, 陈国勇, 等. 富磷矿三阶段动态成矿模式: 黔中开阳式高品位磷矿成矿机制[J]. 古地理学报, 2019, 21(2): 351-368.

    Google Scholar

    Zhang Y G, Du Y S, Chen G Y, et al. Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 351-368.

    Google Scholar

    [11] Goldberg T, Poulton S W, Strauss H. Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution[J]. Precambrian Research, 2005, 137(3-4): 223-241. doi: 10.1016/j.precamres.2005.03.003

    CrossRef Google Scholar

    [12] Qiao W L, Lang X G, Peng Y B, et al. Sulfur and oxygen isotopes of sulfate extracted from early Cambrian phosphorite nodules: Implications for marine redox evolution in the Yangtze Platform[J]. Journal of Earth Science (Wuhan, China), 2016, 27(2): 170-179.

    Google Scholar

    [13] Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1-2): 7-61. doi: 10.1016/j.palaeo.2007.03.025

    CrossRef Google Scholar

    [14] 刘静江, 李伟, 张宝民, 等. 上扬子地区震旦纪沉积古地理[J]. 古地理学报, 2015, 17(6): 735-753.

    Google Scholar

    Liu J J, Li W, Zhang B M, et al. Sedimentary palaeo-geography of the Sinian in Upper Yangtze Region[J]. Journal of Palaeogeography (Chinese Edition), 2015, 17(6): 735-753.

    Google Scholar

    [15] Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551Ma) in South China[J]. Gondwana Research, 2011, 19(4): 831-849. doi: 10.1016/j.gr.2011.01.006

    CrossRef Google Scholar

    [16] 杨爱华, 朱茂炎, 张俊明, 等. 扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比[J]. 古地理学报, 2015, 17(1): 1-20.

    Google Scholar

    Yang A H, Zhu M Y, Zhang J M, et al. Sequence stratigraphic subdivision and correlation of the Ediacaran (Sinian) Doushantuo Formation of Yangtze Plate, South China[J]. Journal of Palaeogeography (Chinese Edition), 2015, 17(1): 1-20.

    Google Scholar

    [17] 徐丽, 邢蓝田, 王鑫, 等. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定[J]. 岩矿测试, 2018, 37(1): 15-20.

    Google Scholar

    Xu L, Xing L T, Wang X, et al. Study on the optimal reaction temperature and sampling weight for measurement of carbon and nitrogen isotope ratio by elemental analyzer-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2018, 37(1): 15-20.

    Google Scholar

    [18] 高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58.

    Google Scholar

    Gao J F, Xu Y M, Fan C F, et al. Analysis of sulfur isotope composition of gypsum samples by elemental analyzer-isotope mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58.

    Google Scholar

    [19] Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate[J]. Science, 1998, 282(5393): 1459-1462. doi: 10.1126/science.282.5393.1459

    CrossRef Google Scholar

    [20] Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event[J]. Earth and Planetary Science Letters, 2011, 312(3-4): 484-496. doi: 10.1016/j.epsl.2011.10.030

    CrossRef Google Scholar

    [21] Crockford P W, Kunzmann M, Bekker A, et al. Claypool continued: Extending the isotopic record of sedimentary sulfate[J]. Chemical Geology, 2019, 513: 200-225. doi: 10.1016/j.chemgeo.2019.02.030

    CrossRef Google Scholar

    [22] Fike D A, Bradley A S, Rose C V. Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622. doi: 10.1146/annurev-earth-060313-054802

    CrossRef Google Scholar

    [23] Gomes M L, Hurtgen M T. Sulfur isotope fractionation in modern euxinic systems: Implications for paleo-environmental reconstructions of paired sulfate-sulfide isotope records[J]. Geochimica et Cosmochimica Acta, 2015, 157: 39-55. doi: 10.1016/j.gca.2015.02.031

    CrossRef Google Scholar

    [24] Wang W, Guan C, Zhou C, et al. Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution[J]. Geobiology, 2017, 15(4): 552-571. doi: 10.1111/gbi.12226

    CrossRef Google Scholar

    [25] Bristow T F, Grotzinger J P. Sulfate availability and the geological record of cold-seep deposits[J]. Geology, 2013, 41(7): 811-814. doi: 10.1130/G34265.1

    CrossRef Google Scholar

    [26] Present T M, Gutierrez M, Paris G, et al. Diagenetic controls on the isotopic composition of carbonate-associated sulphate in the Permian Capitan Reef Complex, West Texas[J]. Sedimentology, 2019, 66(7): 2605-2626. doi: 10.1111/sed.12615

    CrossRef Google Scholar

    [27] Horacek M, Brandner R, Richoz S, et al. Lower Triassic sulphur isotope curve of marine sulphates from the Dolomites, N-Italy[J]. Palaeogeography, Palaeocli-matology, Palaeoecology, 2010, 290(1-4): 65-70. doi: 10.1016/j.palaeo.2010.02.016

    CrossRef Google Scholar

    [28] Prince J, Rainbird R H, Wing B A. Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur[J]. Geology, 2019, 47(4): 375-379. doi: 10.1130/G45464.1

    CrossRef Google Scholar

    [29] Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3733-3756. doi: 10.1016/S0016-7037(01)00884-5

    CrossRef Google Scholar

    [30] Paytan A, Mearon S, Cobb K M, et al. Origin of marine barite deposits: Sr and S isotope characterization[J]. Geology, 2002, 30(8): 747-750. doi: 10.1130/0091-7613(2002)030<0747:OOMBDS>2.0.CO;2

    CrossRef Google Scholar

    [31] Griffith E M, Paytan A. Barite in the ocean-occurrence, geochemistry and palaeoceanographic applications[J]. Sedimentology, 2012, 59(6): 1817-1835. doi: 10.1111/j.1365-3091.2012.01327.x

    CrossRef Google Scholar

    [32] Paris G, Adkins J F, Sessions A L, et al. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies[J]. Science, 2014, 346(6240): 739-741.

    Google Scholar

    [33] Tostevin R, He T C, Turchyn A V, et al. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate[J]. Precambrian Research, 2017, 290: 113-125. doi: 10.1016/j.precamres.2017.01.004

    CrossRef Google Scholar

    [34] Paris G, Fehrenbacher J S, Sessions A L, et al. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1452-1561. doi: 10.1002/2014GC005295

    CrossRef Google Scholar

    [35] Ma H R, Dong L, Shen B, et al. Sulfur and oxygen isotopic compositions of carbonate associated sulfate (CAS) of Cambrian ribbon rocks: Implications for the constraints on using CAS to reconstruct seawater sulfate sulfur isotopic compositions[J]. Chemical Geology, 2021, 580: 120369. doi: 10.1016/j.chemgeo.2021.120369

    CrossRef Google Scholar

    [36] Wu N, Farquhar J, Fike D A. Ediacaran sulfur cycle: Insights from sulfur isotope measurements (Δ33S and δ34S) on paired sulfate-pyrite in the Huqf Supergroup of Oman[J]. Geochimica et Cosmochimica Acta, 2015, 164: 352-364. doi: 10.1016/j.gca.2015.05.031

    CrossRef Google Scholar

    [37] Wang R M, Lang X G, Ding W M, et al. The coupling of Phanerozoic continental weathering and marine phosphorus cycle[J]. Scientific Reports, 2020, 10(1): 5794. doi: 10.1038/s41598-020-62816-z

    CrossRef Google Scholar

    [38] Hawkings J, Wadham J, Tranter M, et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic[J]. Global Biogeochemical Cycles, 2016, 30(2): 191-210. doi: 10.1002/2015GB005237

    CrossRef Google Scholar

    [39] Compton J, Mallinson D, Glenn C R, et al. Variations in the global phosphorus cycle[J]. Special Publication-Society for Sedimentary Geology, 2000, 66: 21-33.

    Google Scholar

    [40] Zhenbing S, Strother P, Papineau D. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅱ: Microbial diversity and C isotopes[J]. Precambrian Research, 2014, 251: 62-79. doi: 10.1016/j.precamres.2014.06.004

    CrossRef Google Scholar

    [41] Cui H, Xiao S, Chuanming Z, et al. Phosphogenesis asso-ciated with the Shuram Excursion; petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China[J]. Sedimentary Geology, 2016, 341: 134-146. doi: 10.1016/j.sedgeo.2016.05.008

    CrossRef Google Scholar

    [42] Nelson G J, Pufahl P K, Hiatt E E. Paleoceanographic constraints on Precambrian phosphorite accumulation, Baraga Group, Michigan, USA[J]. Sedimentary Geology, 2010, 226(1-4): 9-21. doi: 10.1016/j.sedgeo.2010.02.001

    CrossRef Google Scholar

    [43] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952. doi: 10.1126/science.1154499

    CrossRef Google Scholar

    [44] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369

    CrossRef Google Scholar

    [45] Johnston D T, Poulton S W, Dehler C, et al. An emerging picture of Neoproterozoic ocean chemistry: Insights from the Chuar Group, Grand Canyon, USA[J]. Earth and Planetary Science Letters, 2010, 290(1-2): 64-73. doi: 10.1016/j.epsl.2009.11.059

    CrossRef Google Scholar

    [46] Li C, Cheng M, Algeo T J, et al. A theoretical prediction of chemical zonation in early oceans (>520Ma)[J]. Science China: Earth Sciences, 2015, 58(11): 1901-1909. doi: 10.1007/s11430-015-5190-7

    CrossRef Google Scholar

    [47] Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1-220. doi: 10.7185/geochempersp.1.1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1111) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint