Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 4
Article Contents

YANG Shiping, YANG Xihua, LI Anbang, FAN Pengfei, ZHAO Zijuan, CHEN Xiaofan, YU Feixiang. Study on Geochemical Characteristics and REE Mineralization of S-enriched Monazite in the Dabie Orogenic Belt by Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2022, 41(4): 541-553. doi: 10.15898/j.cnki.11-2131/td.202110240154
Citation: YANG Shiping, YANG Xihua, LI Anbang, FAN Pengfei, ZHAO Zijuan, CHEN Xiaofan, YU Feixiang. Study on Geochemical Characteristics and REE Mineralization of S-enriched Monazite in the Dabie Orogenic Belt by Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2022, 41(4): 541-553. doi: 10.15898/j.cnki.11-2131/td.202110240154

Study on Geochemical Characteristics and REE Mineralization of S-enriched Monazite in the Dabie Orogenic Belt by Electron Probe Microanalysis

More Information
  • BACKGROUND

    Monazite is a common rare earth mineral and an important ore mineral in many rare earth deposits, while sulfur-containing monazite is relatively rare and is only found in a few carbonate rocks, kimberlites, and metamorphic rocks.

    OBJECTIVES

    To accurately analyze the chemical composition of S-enriched monazite, and to infer its genesis.

    METHODS

    The main chemical components of S-enriched monazite from the REE ores in the Baiyanggou area of Puchun County, Dabie orogenic belt were determined by polarized light microscopy and electron probe microanalysis.

    RESULTS

    The sulfur-enriched monazite in the rare-earth mineralized amphibole schist in the study area was mostly colloidal and agglomerate, some were plate-like and columnar euhedral crystals, which were granular aggregates. There was mutual interaction, inclusion, and a semi-inclusion spatial relationship between sulfur-enriched monazite and apatite. Crosscut of apatite by network veins was also present. Petrography showed that there was a metasomatism similar to hydrothermal alteration between sulfur-enriched monazite and apatite. The SO3 content of S-enriched monazite in the rare earth-enriched mineral samples was as high as 14.57%, with an average content of 10.54%, which was the monazite with the highest S content. The S-enriched monazite has a higher CaO content and a low NdO content, which was quite different from the composition of the granite genesis monazite and hydrothermal metasomatic sulfur-deficient monazite. According to the negative correlation between S6+ and P5+, as well as the negative correlation between (Sr, Ca)2+, S6+ and REE3+, P5+, the S-containing monazatite can be explained by the "anhydrite coupling" displacement reaction, that is, (Sr, Ca)2++S6+↔REE3++P5+. This indicated that hydrothermal activity related to REE mineralization in the Baiyanggou area was present.

    CONCLUSIONS

    Combined with the geological background of the Baiyanggou area, it is inferred that the source of the hydrothermal fluid may be related to the intense lithospheric extensional movement and the late magmatic activity in the study area since the Cretaceous period. This provides new clues for research on the origin of rare earth polymetallic mineralization in this area.

  • 加载中
  • [1] Williams M L, Jercinovic M J, Hetherington C J. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology[J]. Annual Review of Earth & Planetary Sciences, 2007, 35: 137-175.

    Google Scholar

    [2] Chakhmouradian A R, Wall F. Rare earth elements: Min-erals, mines, magnets (and more)[J]. Elements, 2012, 8(5): 333-340. doi: 10.2113/gselements.8.5.333

    CrossRef Google Scholar

    [3] 梁晓, 徐亚军, 訾建威, 等. 独居石成因矿物学特征及其对U-Th-Pb年龄解释的制约[J]. 地球科学, 2022, 47(4): 1383-1398.

    Google Scholar

    Liang X, Xu Y J, Zi J W, et al. Genetic mineralogy of monazite and constraints on the interpretation of U-Th-Pb ages[J]. Earth Science, 2022, 47(4): 1383-1398.

    Google Scholar

    [4] Verplanck P L. The role of fluids in the formation of rare earth element deposits[J]. Procedia Earth and Planetary Science, 2017, 17: 758-761. doi: 10.1016/j.proeps.2017.01.014

    CrossRef Google Scholar

    [5] 洪文兴, 朱祥坤. 独居石微粒微区成分分布的研究[J]. 高校地质学报, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009

    CrossRef Google Scholar

    Hong W X, Zhu X K. A microanalysis study on monazite composition distribution[J]. Geological Journal of China Universities, 2000, 6(2): 167-172. doi: 10.3969/j.issn.1006-7493.2000.02.009

    CrossRef Google Scholar

    [6] 邱昆峰, 杨立强. 独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析[J]. 岩石学报, 2011, 27(9): 2721-2732.

    Google Scholar

    Qiu K F, Yang L Q. Genetic feature of monazite and its U-Th-Pb dating: Critical considerations on the tectonic evolution of Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011, 27(9): 2721-2732.

    Google Scholar

    [7] Engi M. Petrochronology based on REE-minerals: Monazite, allanite, xenotime, apatite[J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 365-418. doi: 10.2138/rmg.2017.83.12

    CrossRef Google Scholar

    [8] 吴黎光, 李献华. 独居石微区同位素和元素分析及地质应用[J]. 矿物岩石地球化学通报, 2020, 39(6): 18.

    Google Scholar

    Wu L G, Li X H. Isotopic and elemental microanalyses of monazite and its geological application[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2020, 39(6): 18.

    Google Scholar

    [9] 王濮, 潘兆橹, 翁玲宝, 等. 系统矿物学[M]. 北京: 地质出版社, 1987.

    Google Scholar

    Wang P, Pan Z L, Weng L B, et al. Systematic mineralogy[M]. Beijing: Geological Publishing House, 1987.

    Google Scholar

    [10] Krenn E, Putz H, Finger F, et al. Sulfur-rich monazite with high common Pb in ore-bearing schists from the Schellgaden mining district (Tauern Window, eastern Alps)[J]. Mineralogy and Petrology, 2011, 102(1-4): 51-62. doi: 10.1007/s00710-011-0170-x

    CrossRef Google Scholar

    [11] Enkhbayar D, Seo J, Choi S G, et al. Mineral chemistry of REE-rich apatite and sulfur-rich monazite from the Mushgai Khudag, alkaline volcanic-plutonic complex, South Mongolia[J]. International Journal of Geosciences, 2016, 7(1): 20-31. doi: 10.4236/ijg.2016.71003

    CrossRef Google Scholar

    [12] Prokopyev I R, Doroshkevich A G, Ponomarchuk A V, et al. Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (central Aldan, Russia)[J]. Ore Geology Reviews, 2017, 81: 296-308. doi: 10.1016/j.oregeorev.2016.10.012

    CrossRef Google Scholar

    [13] Chakhmouradian A R, Mitchell R H. Niobian ilmenite, hydroxylapatite and sulfatian monazite: Alternative hosts for incompatible elements in calcite kimberlite from Internatsional'naya, Yakutia[J]. Canadian Mineralogist, 1999, 37: 1177-1189.

    Google Scholar

    [14] Suzuki K, Kato T. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data[J]. Gondwana Research, 2008, 14(4): 569-586. doi: 10.1016/j.gr.2008.01.005

    CrossRef Google Scholar

    [15] Prsek J, Ondrejka M, Baík P, et al. Metamorphic-hydrothermal REE minerals in the Bacúch magnetite deposit, western Carpathians, Slovakia: (Sr, S)-rich monazite-(Ce) and Nd-dominant hingganite[J]. The Canadian Mineralogist, 2010, 48(1): 81-94. doi: 10.3749/canmin.48.1.81

    CrossRef Google Scholar

    [16] Ondrejka M, Putiš M, Uher P, et al. Fluid-driven destab-ilization of REE-bearing accessory minerals in the granitic orthogneisses of North Veporic basement (western Carpathians, Slovakia)[J]. Mineralogy and Petrology, 2016, 110(5): 561-580. doi: 10.1007/s00710-016-0432-8

    CrossRef Google Scholar

    [17] Laurent A T, Seydoux-Guillaume A M, Duchene S, et al. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts[J]. Contributions to Mineralogy and Petrology, 2016, 171(11): 94. doi: 10.1007/s00410-016-1301-5

    CrossRef Google Scholar

    [18] Chen W, Honghui H, Bai T, et al. Geochemistry of monazite within carbonatite related REE deposits[J]. Resources, 2017, 6(4): 51. doi: 10.3390/resources6040051

    CrossRef Google Scholar

    [19] 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学: 地球科学, 1996, 26(3): 193-200.

    Google Scholar

    Zhang G W, Meng Q R, Yu Z P, et al. Orogenic process and dynamic characteristics of Qinling orogenic belt[J]. Science in China: Earth Sciences, 1996, 26(3): 193-200.

    Google Scholar

    [20] 许长海. 大别造山带碰撞后构造热/岩浆演化过程[D]. 上海: 同济大学, 2002.

    Google Scholar

    Xu C H. Tectonic thermal/magmatic evolution after collision in the Dabieshan Orogen[D]. Shanghai: Tongji University, 2002.

    Google Scholar

    [21] 张国伟, 董云鹏, 赖绍聪, 等. 秦岭—大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学: 地球科学, 2003, 33(12): 1121-1135.

    Google Scholar

    Zhang G W, Dong Y P, Lai S C, et al. The Mianlue structural belt and the Mianlue suture in the southern margin of the Qinling—Dabie orogenic belt[J]. Science in China: Earth Sciences, 2003, 33(12): 1121-1135.

    Google Scholar

    [22] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling—Tongbai—Hong'an—Dabie—Sulu orogenic belt in central China[J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007

    CrossRef Google Scholar

    [23] 刘晓春, 李三忠, 江博明. 桐柏—红安造山带的构造演化: 从大洋俯冲/增生到陆陆碰撞[J]. 中国科学: 地球科学, 2015, 45(8): 1088-1108.

    Google Scholar

    Liu X C, Li S Z, Jiang B M. Tectonic evolution of the Tongbai—Hong'an orogen in central China: From oceanic subduction/accretion to continent-continent collision[J]. Science in China: Earth Sciences, 2015, 45(8): 1088-1108.

    Google Scholar

    [24] 李锦铁. 中朝地块与扬子地块碰撞的时限与方式——长江中下游地区震旦纪—侏罗纪沉积环境的演变[J]. 地质学报, 2001, 75(1): 25-34. doi: 10.3321/j.issn:0001-5717.2001.01.003

    CrossRef Google Scholar

    Li J T. Pattern and time of the collision between the Sino—Korean and Yangtze blocks: Evolution of the Sinian—Jurassic sedimentary settings in the middle-lower reaches of the Yangtze River[J]. Acta Geologica Sinica, 2001, 75(1): 25-34. doi: 10.3321/j.issn:0001-5717.2001.01.003

    CrossRef Google Scholar

    [25] 许长海, 周祖翼, 马昌前, 等. 大别造山带140~85Ma热窿伸展作用——年代学约束[J]. 中国科学: 地球科学, 2001, 31(11): 925-936.

    Google Scholar

    Xu C H, Zhou Z Y, Ma C Q, et al. Thermal extension of the Dabie orogenic belt from 140 to 85Ma—Chronological constraints[J]. Science in China: Earth Sciences, 2001, 31(11): 925-936.

    Google Scholar

    [26] 张超, 马昌前. 大别山晚中生代巨量岩浆活动的启动: 花岗岩锆石U-Pb年龄和Hf同位素制约[J]. 矿物岩石, 2008, 28(4): 71-79. doi: 10.3969/j.issn.1001-6872.2008.04.013

    CrossRef Google Scholar

    Zhang C, Ma C Q. Large-scale late mesozoic magmatism in the Dabie mountain: Constraints from zircon U-Pb dating and Hf isotopes[J]. Mineralogy and Petrology, 2008, 28(4): 71-79. doi: 10.3969/j.issn.1001-6872.2008.04.013

    CrossRef Google Scholar

    [27] 刘玉龙, 陈江峰, 李惠民, 等. 白云鄂博矿床白云石型矿石中独居石单颗粒U-Th-Pb-Sm-Nd定年[J]. 岩石学报, 2005, 21(3): 881-888.

    Google Scholar

    Liu Y L, Chen J F, Li H M, et al. Single-grain U-Th-Pb-Sm-Nd dating of monazite from dolomite type ore of the Bayan Obo deposit[J]. Acta Petrologica Sinica, 2005, 21(3): 881-888.

    Google Scholar

    [28] 陈益平, 潘家永, 胡凯, 等. 贵州遵义镍-钼富集层中独居石的发现及成因意义[J]. 岩石矿物学杂志, 2007, 26(4): 340-344. doi: 10.3969/j.issn.1000-6524.2007.04.007

    CrossRef Google Scholar

    Chen Y P, Pan J Y, Hu K, et al. Discovery of monazite in the Ni-Mo sulfide layer of Zunyi, Guizhou Province, and its genetic significance[J]. Acta Petrological et Mineralogica, 2007, 26(4): 340-344. doi: 10.3969/j.issn.1000-6524.2007.04.007

    CrossRef Google Scholar

    [29] Al Ani T, Sarapää O. Geochemistry and mineral phases of REE in Jammi carbonatite veins and fenites, southern end of the Sokli complex, NE Finland[J]. Geochemistry: Exploration, Environment, Analysis, 2013, 13(3): 217-224. doi: 10.1144/geochem2011-088

    CrossRef Google Scholar

    [30] 张龙, 陈振宇, 汪方跃, 等. 电子探针技术研究粤北龙华山岩体中独居石蚀变晕圈的结构与成分特征[J]. 岩矿测试, 2022, 41(2): 174-184.

    Google Scholar

    Zhang L, Chen Z Y, Wang F Y, et al. Application of electron microprobe to textural and compositional characteristics of alteration coronas of monazite from the Longhuashan granite, northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174-184.

    Google Scholar

    [31] 汪双双, 吴春俊, 李艳广, 等. 西秦岭阳山金矿带花岗斑岩中独居石的矿物学特征及成因指示[J]. 矿物岩石地球化学通报, 2018, 37(3): 529-538.

    Google Scholar

    Wang S S, Wu C J, Li Y G, et al. Mineralogical characteristics and their genetic implication of monazite in granite porphyries from the Yangshan gold metallogenic belt, West Qinling mountains[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 529-538.

    Google Scholar

    [32] 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679.

    Google Scholar

    Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679.

    Google Scholar

    [33] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145-155.

    Google Scholar

    Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uraniumare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155.

    Google Scholar

    [34] Broom-Fendley S, Smith M P, Andrade M B, et al. Sulfur-bearing monazite-(Ce) from the Eureka carbonatite, Namibia: Oxidation state, substitution mechanism, and formation conditions[J]. Mineralogical Magazine, 2019, 84(1): 35-48.

    Google Scholar

    [35] Wu L G, Li X H, Ling X X, et al. Further characterization of the RW-1 monazite: A new working reference material for oxygen and neodymium isotopic microanalysis[J]. Minerals, 2019, 9(10): 583. doi: 10.3390/min9100583

    CrossRef Google Scholar

    [36] Kukharenko A A, Orlova M P, Bulakh A G, et al. The Caledonian Complex of ultrabasic alkaline rocks and carbonatites of the Kola Peninsula and northern Karelia[R]. Russia: Nedra Press Leningrad, 1965.

    Google Scholar

    [37] Nikolenko A M, Redina A A, Doroshkevich A G, et al. The origin of magnetite-apatite rocks of Mushgai—Khudag Complex, South Mongolia: Mineral chemistry and studies of melt and fluid inclusions[J]. Lithos, 2018, 320: 567-582.

    Google Scholar

    [38] Okay A I, Xu S, Sengor A M C. Coesite from the Dabie Shan eclogites, central China[J]. European Journal of Mineralogy, 1989, 1(4): 595-598. doi: 10.1127/ejm/1/4/0595

    CrossRef Google Scholar

    [39] Jahn B, Wu F, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 1999, 157(1): 119-146.

    Google Scholar

    [40] 马昌前, 杨坤光, 明厚利, 等. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学: 地球科学, 2003, 33(9): 817-827.

    Google Scholar

    Ma C Q, Yang K G, Ming H L, et al. The time when the Mesozoic crust in the Dabie Mountains changed from compression to extension: Evidence for granites[J]. Science in China: Earth Sciences, 2003, 33(9): 817-827.

    Google Scholar

    [41] 杨谦, 施炜, 侯贵廷. 中国东部及邻区晚中生代伸展拆离构造——综述与新认识[J]. 地球学报, 2019, 40(4): 511-544.

    Google Scholar

    Yang Q, Shi W, Hou G T. Late mesozoic extensional detachment structures in eastern China and adjacent areas: Overview and new insight[J]. Acta Geoscientica Sinica, 2019, 40(4): 511-544.

    Google Scholar

    [42] 李石, 王彤. 桐柏山—大别山花岗岩类地球化学[M]. 武汉: 中国地质大学出版社, 1991.

    Google Scholar

    Li S, Wang T. Geochemistry of granitoids in Tongbaishan—Dabieshan, central China[M]. Wuhan: China University of Geosciences Press, 1991.

    Google Scholar

    [43] 龚银杰, 朱江, 陈冬明, 等. 大别山南麓梨木岭钼矿床辉钼矿Re-Os同位素年龄及地质意义[J]. 矿床地质, 2017, 36(4): 992-1002.

    Google Scholar

    Gong Y J, Zhu J, Chen D M, et al. Re-Os isotopic ages of Limuling molybdenum deposit in southern Dabie Mountain and their geological significance[J]. Mineral Deposits, 2017, 36(4): 992-1002.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1032) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint