Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 4
Article Contents

CAO Han, ZHANG Yue, JIN Jie, WANG Xiangxue. Iodine Speciation, Transportation, and Transformation in Soils: A Critical Review[J]. Rock and Mineral Analysis, 2022, 41(4): 521-530. doi: 10.15898/j.cnki.11-2131/td.202203170055
Citation: CAO Han, ZHANG Yue, JIN Jie, WANG Xiangxue. Iodine Speciation, Transportation, and Transformation in Soils: A Critical Review[J]. Rock and Mineral Analysis, 2022, 41(4): 521-530. doi: 10.15898/j.cnki.11-2131/td.202203170055

Iodine Speciation, Transportation, and Transformation in Soils: A Critical Review

More Information
  • BACKGROUND

    Identifying the occurrence form of iodine in soil and the law of iodine migration and transformation in soil is of great significance for evaluating the biogeochemical behavior of iodine and preventing human iodine deficiency diseases.

    OBJECTIVES

    To review the source, content, speciation, transportation, and transformation of iodine in soils; and briefly summarize the transportation of iodine between soil and plants.

    METHODS

    The source, content, speciation, transportation, and transformation characteristics of iodine in soils were reviewed. The influences of soil types, environmental factors, organic matter, microbial activity, pH, and Eh on iodine dynamics were summarized. Great emphasis was laid on the main factors affecting the sorption of iodine in soil, which is the key process regulating soil iodine mobility and bioavailability.

    RESULTS

    The dry and wet deposition of the atmosphere, the weathering of the soil parent rock, and the absorption and release of plants are the main sources of iodine in soil. Iodine contents in soil typically range from 1 to 5mg/kg. Organic iodine is the dominant form of iodine in soil due to the close association of iodine with organic matter, which is the critical factor affecting soil iodine dynamics. Sorption is the key process regulating soil iodine mobility and bioavailability. Under acidic conditions, hydroxyl groups on soil mineral surface are protonated, and thus facilitating iodine sorption via electrostatic interaction.

    CONCLUSIONS

    Due to the complex composition of soil, establishing a complete soil iodine database is the basis for exploring soil iodine related aspects. It is necessary to further seek better soil iodine analysis methods. Studying the adsorption mechanism of soil iodine and the effect of organic matter and microorganisms on iodine in soil are also an important direction for future research.

  • 加载中
  • [1] Saha S, Abu B, Jamshidi N Y, et al. Is iodine deficiency still a problem in sub-Saharan Africa?: A review[J]. Proceedings of the Nutrition Society, 2019, 78(4): 1-13.

    Google Scholar

    [2] Wang Z, Zhang Y L, Zhang J K, et al. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review[J]. Chemosphere, 2022, 287: 132313. doi: 10.1016/j.chemosphere.2021.132313

    CrossRef Google Scholar

    [3] Kadowaki M, Katata G, Terada H, et al. Impacts of anthro-pogenic source from the nuclear fuel reprocessing plants on global atmospheric iodine-129 cycle: A model analysis[J]. Atmospheric Environment, 2018, 184: 278-291. doi: 10.1016/j.atmosenv.2018.04.044

    CrossRef Google Scholar

    [4] Ota M, Terada H, Hasegawa H, et al. Processes affecting land-surface dynamics of I-129 impacted by atmospheric I-129 releases from a spent nuclear fuel reprocessing plant[J]. Science of the Total Environment, 2019, 704: 135319.

    Google Scholar

    [5] 罗璐. 典型流域土壤水系沉积物碘的空间分布特征研究[D]. 武汉: 中国地质大学(武汉), 2019.

    Google Scholar

    Luo L. Study on the spatial distribution characteristics of iodine in soil-water sediment of a typical watershed[D]. Wuhan: China University of Geosciences (Wuhan), 2019.

    Google Scholar

    [6] 任冬, 周小琳, 宗有银, 等. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘[J]. 岩矿测试, 2019, 38(6): 734-740.

    Google Scholar

    Ren D, Zhou X L, Zong Y Y, et al. Determination of trace iodine in soils, sediments and rocks by ICP-MS after pressurized acid digestion hydroxylamine hydrochloride reduction[J]. Rock and Mineral Analysis, 2019, 38(6): 734-740.

    Google Scholar

    [7] 袁燕平, 彭红星, 李悟庆, 等. 电感耦合等离子体质谱法准确测定多矿中碘的含量[J]. 饲料研究, 2019, 42(12): 92-95.

    Google Scholar

    Yuan Y P, Peng H X, Li W Q, et al. Accurate determination of iodine content in polyore by inductively coupled plasma mass spectrometry[J]. Feed Research, 2019, 42(12): 92-95.

    Google Scholar

    [8] Silva J S, Diehl L O, Frohlich A C, et al. Determination of bromine and iodine in edible flours by inductively coupled plasma mass spectrometry after microwave-induced combustion[J]. Microchemical Journal: Devoted to the Application of Microtechniques in all Branches of Science, 2017, 133: 246-250.

    Google Scholar

    [9] 胡梦娜, 周启星, 陈翠红, 等. 高效液相色谱-电感耦合等离子体质谱法测定土壤中不同形态的无机碘[J]. 分析测试学报, 2019, 38(11): 1389-1392. doi: 10.3969/j.issn.1004-4957.2019.11.018

    CrossRef Google Scholar

    Hu M N, Zhou Q X, Chen C H, et al. Determination of inorganic iodine in soil by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2019, 38(11): 1389-1392. doi: 10.3969/j.issn.1004-4957.2019.11.018

    CrossRef Google Scholar

    [10] Duborska E, Bujdo M, Urik M, et al. Iodine fractionation in agricultural and forest soils using extraction methods[J]. Catena, 2020, 195: 104749. doi: 10.1016/j.catena.2020.104749

    CrossRef Google Scholar

    [11] Mohiuddin M, Irshad M, Ping A, et al. Bioavailability of iodine to mint from soil applied with selected amendments[J]. Chemical Speciation and Bioavailability, 2019, 31(1): 138-144.

    Google Scholar

    [12] 姜旭宏, 侯小琳, 陈宁, 等. 环境水样中I-129分析及其在环境示踪中的应用[J]. 地球环境学报, 2017, 8(3): 203-224.

    Google Scholar

    Jiang X H, Hou X L, Chen N, et al. Analysis of I-129 in environmental water samples and its application in environmental tracing[J]. Journal of Earth Environment, 2017, 8(3): 203-224.

    Google Scholar

    [13] Mohammadi M, Azizi F, Hedayati M. Iodine deficiency status in the WHO eastern Mediterranean Region: A systematic review[J]. Environmental Geochemistry & Health, 2018, 40(1): 1-11.

    Google Scholar

    [14] Duborska E, Urik M, Bujdos M, et al. Aging and substrate type effects on iodide and iodate accumulation by barley (Hordeum vulgare L. )[J]. Water Air and Soil Pollution, 2016, 227(11): 407. doi: 10.1007/s11270-016-3112-8

    CrossRef Google Scholar

    [15] 黄会前, 何腾兵, 牟力. 贵州母岩(母质)对土壤类型及分布的影响[J]. 浙江农业科学, 2016, 57(11): 1816-1820.

    Google Scholar

    Huang H Q, He T B, Mou L. Effects of parent rocks on soil types and distribution in Guizhou Province[J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(11): 1816-1820.

    Google Scholar

    [16] Legrand M, Mcconnell J R, Preunkert S, et al. Alpine ice evidence of a three-fold increase in atmospheric iodine deposition since 1950 in Europe due to increasing oceanic emissions[J]. Proceedings of the National Academy of Sciences, 2018, 115(48): 12136-12141. doi: 10.1073/pnas.1809867115

    CrossRef Google Scholar

    [17] Roulier M, Coppin F, Bueno M, et al. Iodine budget in forest soils: Influence of environmental conditions and soil physicochemical properties[J]. Chemosphere, 2019, 224: 20-28. doi: 10.1016/j.chemosphere.2019.02.060

    CrossRef Google Scholar

    [18] 周骏. 浙江省土壤中硒、碘的环境与生物地球化学特征研究[D]. 杭州: 浙江大学, 2016.

    Google Scholar

    Zhou J. Environmental and biogeochemical characterization of selenium and iodine in soils of Zhejiang Province[D]. Hangzhou: Zhejiang University, 2016.

    Google Scholar

    [19] Tsukada H, Takeda1 A, Tagami K, et al. Uptake and distribution of iodine in rice plants[J]. Journal of Environmental Quality, 2008, 37(6): 2243-2247. doi: 10.2134/jeq2008.0010

    CrossRef Google Scholar

    [20] Weng H X, Yan A L, Hong C L, et al. Biogeochemical transfer and dynamics of iodine in a soil-plant system[J]. Environmental Geochemistry & Health, 2009, 31(3): 401-411.

    Google Scholar

    [21] Shinonaga T, Gerzabek M H, Strebl F, et al. Transfer of iodine from soil to cereal grains in agricultural areas of Austria[J]. Science of the Total Environment, 2001, 267(1-3): 33-40. doi: 10.1016/S0048-9697(00)00764-6

    CrossRef Google Scholar

    [22] Carpenter L J, Chance R J, Sherwen T, et al. Marine iodine emissions in a changing world[J]. Proceedings of Royal Society A: Mathematical Physical and Engineering Sciences, 2021, 477(2247): 20200824. doi: 10.1098/rspa.2020.0824

    CrossRef Google Scholar

    [23] Junior E, Wadt L, Silva K, et al. Geochemistry of selenium, barium, and iodine in representative soils of the Brazilian Amazon rainforest[J]. Science of the Total Environment, 2022, 828: 154426. doi: 10.1016/j.scitotenv.2022.154426

    CrossRef Google Scholar

    [24] Johnson C C. Database of iodine content of soils populated with data from published literature[M]. British Geological Survey Commissioned Report, 2003: 38.

    Google Scholar

    [25] 孙自军, 刘延霞. 碘的分析方法研究进展[J]. 化学工程师, 2013, 27(4): 54-57. doi: 10.3969/j.issn.1002-1124.2013.04.017

    CrossRef Google Scholar

    Sun Z J, Liu Y X. Advances in the analysis of iodine[J]. Chemical Engineer, 2013, 27(4): 54-57. doi: 10.3969/j.issn.1002-1124.2013.04.017

    CrossRef Google Scholar

    [26] 谢恬, 陈建斌, 胡超, 等. 土壤中碘的来源和分布及影响因素[J]. 安徽农业科学, 2010, 38(21): 11350-11351, 11354. doi: 10.3969/j.issn.0517-6611.2010.21.115

    CrossRef Google Scholar

    Xie T, Chen J B, Hu C, et al. Study on the distribution of iodine in soil and its influencing factors[J]. Journal of Anhui Agricultural Sciences, 2010, 38(21): 11350-11351, 11354. doi: 10.3969/j.issn.0517-6611.2010.21.115

    CrossRef Google Scholar

    [27] 洪春来. 土壤-蔬菜系统中碘的生物地球化学行为与蔬菜对外源碘的吸收机制研究[D]. 杭州: 浙江大学, 2007.

    Google Scholar

    Hong C L. Biogeochemical behavior of iodine in soil-vegetable systems and the uptake mechanism of exogenous iodine by vegetables[D]. Hangzhou: Zhejiang University, 2007.

    Google Scholar

    [28] 韦后明. 甲基橙氧化褪色光度法测定食盐中碘酸钾的改进[J]. 中国调味品, 2018, 43(2): 139-141. doi: 10.3969/j.issn.1000-9973.2018.02.032

    CrossRef Google Scholar

    Wei H M. Improvement of spectrophotometric determin-ation of potassium iodate in salt by oxidation bleaching with methyl orange[J]. Chinese Condiment, 2018, 43(2): 139-141. doi: 10.3969/j.issn.1000-9973.2018.02.032

    CrossRef Google Scholar

    [29] 于立娟, 李广义, 袁玉霞, 等. 容量法测定卤水中碘含量的不确定度评定[J]. 无机盐工业, 2020, 52(8): 84-87.

    Google Scholar

    Yu L J, Li G Y, Yuan Y X, et al. Evaluation of uncertainty in determination of iodine content in brine by volumetric method[J]. Inorganic Chemical Industry, 2020, 52(8): 84-87.

    Google Scholar

    [30] Pournaghi A, Keshvari F, Bahram M. Colorimetric determination of iodine based on highly selective and sensitive anti-aggregation assay[J]. Journal of the Iranian Chemical Society, 2018, 16(1): 143-149.

    Google Scholar

    [31] 刘宝友, 李凤. 离子选择性电极法测定离子液体中的氟离子[J]. 广州化学, 2019, 44(1): 41-46.

    Google Scholar

    Liu B Y, Li F. Determination of fluoride ions in ionic liquids by ion-selective electrode method[J]. Guangzhou Chemistry, 2019, 44(1): 41-46.

    Google Scholar

    [32] 计萍. 有机改进剂用于离子色谱法测碘化物的研究[J]. 环境与可持续发展, 2017, 42(1): 170-171. doi: 10.3969/j.issn.1673-288X.2017.01.052

    CrossRef Google Scholar

    Ji P. Determination of iodide by ion chromatography with organic improver[J]. Environment and Sustainable Development, 2017, 42(1): 170-171. doi: 10.3969/j.issn.1673-288X.2017.01.052

    CrossRef Google Scholar

    [33] 相萍萍, 徐书杭, 刘超. 食物中碘的测定方法[J]. 中国食物与营养, 2017, 23(10): 34-37, 41. doi: 10.3969/j.issn.1006-9577.2017.10.008

    CrossRef Google Scholar

    Xiang P P, Xu S H, Liu C. Determination of iodine in food[J]. Food and Nutrition in China, 2017, 23(10): 34-37, 41. doi: 10.3969/j.issn.1006-9577.2017.10.008

    CrossRef Google Scholar

    [34] 双龙, 阿拉木斯, 金丹, 等. 四甲基氢氧化铵提取-电感耦合等离子体质谱法测定多种食品中的碘[J]. 分析科学学报, 2022, 38(1): 125-128.

    Google Scholar

    Shuang L, Lamusi A, Jin D, et al. Determination of iodine in various foods by extraction of tetramethylammonium hydroxide and inductively coupled plasma mass spectrometry[J]. Journal of Analytical Sciences, 2022, 38(1): 125-128.

    Google Scholar

    [35] 李冰, 史世云, 何红蓼, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅱ. 土壤及沉积物标准物质分析[J]. 岩矿测试, 2001, 20(4): 241-246.

    Google Scholar

    Li B, Shi S Y, He H L, et al. Simultaneous determination of trace iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry Ⅱ. Analysis of soil and sediment standard materials[J]. Rock and Mineral Analysis, 2001, 20(4): 241-246.

    Google Scholar

    [36] 上官俊, 郑建刚, 李志宏. 江西省不同土壤和水中碘含量调查[J]. 现代预防医学, 2016, 43(10): 1763-1765.

    Google Scholar

    Shang G J, Zheng J G, Li Z H. Investigation of iodine content in different soil and water in Jiangxi Province[J]. Modern Preventive Medicine, 2016, 43(10): 1763-1765.

    Google Scholar

    [37] Yi P, Yu Z, Chen P, et al. Late Holocene pathway of Asian summer monsoons imprinted in soils and societal implications[J]. Quaternary Science Reviews, 2019, 215: 35-44. doi: 10.1016/j.quascirev.2019.05.002

    CrossRef Google Scholar

    [38] Mohiuddin M, Irshad M, Hussain Z, et al. Leachability of iodine from soils of different land uses as affected by selected amendments[J]. Environmental Engineering and Management Journal, 2019, 18(9): 2095-2103. doi: 10.30638/eemj.2019.199

    CrossRef Google Scholar

    [39] 薛江凯, 邓娅敏, 杜尧, 等. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示[J]. 地球科学, 2021, 46(11): 4140-4149.

    Google Scholar

    Xue J K, Deng Y M, Du Y, et al. Molecular composition of organic matter in groundwater along the middle reaches of the Yangtze River and its indication for iodine enrichment[J]. Earth Science, 2021, 46(11): 4140-4149.

    Google Scholar

    [40] 吴世汉, 邢光熹. 我国主要土壤类型中溴和碘的分布特性[J]. 土壤学报, 1996(1): 21-23.

    Google Scholar

    Wu S H, Xing G X. Distribution characteristics of bromine and iodine in the main soil types in China[J]. Journal of Soil Science, 1996(1): 21-23.

    Google Scholar

    [41] Dai J L, Zhang M, Zhu Y G. Adsorption and desorption of iodine by various Chinese soils: Ⅰ. Iodate[J]. Environment International, 2004, 30(4): 525-530. doi: 10.1016/j.envint.2003.10.007

    CrossRef Google Scholar

    [42] 王涵. 基于催化氧化还原反应的比色法的构建与应用[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所), 2019.

    Google Scholar

    Wang H. Construction and application of colorimetric method based on catalytic REDOX reaction[D]. Yantai: University of Chinese Academy of Sciences (Yantai Coastal Zone Research Institute, Chinese Academy of Sciences), 2019.

    Google Scholar

    [43] 姚旭, 刘淑香. 过氧化氢体系苯芴酮光度法测定金红石样品中锡元素[J]. 中国石油和化工标准与质量, 2018, 38(19): 57-58.

    Google Scholar

    Yao X, Liu S X. Spectrophotometric determination of tin in rutile by benzfluorenone with hydrogen peroxide system[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(19): 57-58.

    Google Scholar

    [44] 仲惟. 碘化钾-淀粉光度法测定肉制品中亚硝酸钠含量[J]. 中国食品添加剂, 2021, 32(7): 108-113.

    Google Scholar

    Zhong W. Determination of sodium nitrite in meat products by potassium iodide-starch spectrophotometry[J]. China Food Additives, 2021, 32(7): 108-113.

    Google Scholar

    [45] 李洪伟, 刘晓端, 李保山. 地下水和土壤中不同形态碘的分离测定[J]. 岩矿测试, 2009, 28(4): 337-341.

    Google Scholar

    Li H W, Liu X D, Li B S. Separation and determination of different forms of iodine in groundwater and soil[J]. Rock and Mineral Analysis, 2009, 28(4): 337-341.

    Google Scholar

    [46] 刘崴. 碘元素形态分析及环境地球化学应用研究[D]. 北京: 中国地质科学院, 2007.

    Google Scholar

    Liu W. Analysis of iodine speciation and its application in environmental geochemistry[D]. Beijing: Chinese Academy of Geological Sciences, 2007.

    Google Scholar

    [47] Korobova E, Kolmykova L, Ryzhenko B, et al. Distribution and speciation of iodine in drinking waters from geochemically different areas of Bryansk region contaminated after the Chernobyl Accident in relation to health and remediation aspects[J]. Journal of Geochemical Exploration, 2018, 184: 311-317.

    Google Scholar

    [48] Keppler F, Borchers R, Elsner P, et al. Formation of volatile iodinated alkanes in soil: Results from laboratory studies[J]. Chemosphere, 2003, 52(2): 477-483.

    Google Scholar

    [49] Ahmad S, Bailey E H, Arshad M, et al. Multiple geo-chemical factors may cause iodine and selenium deficiency in Gilgit-Baltistan, Pakistan[J]. Environmental Geochemistry and Health, 2021, 43: 4493-4513.

    Google Scholar

    [50] Yamaguchi N, Nakano M, Takamatsu R, et al. Inorganic iodine incorporation into soil organic matter: Evidence from iodine K-edge X-ray absorption near-edge structure[J]. Journal of Environmental Radioactivity, 2010, 101(6): 451-457.

    Google Scholar

    [51] Li H P, Yeager C M, Brinkmeyer R, et al. Bacterial production of organic acids enhances H2O2-dependent iodine oxidation[J]. Environmental Science & Technology, 2012, 46(9): 4837-4844.

    Google Scholar

    [52] Mohiuddin M, Irshad M, Farig M, et al. Extractability of iodine from soils using different methods in relation to soil properties[J]. Arabian Journal of Geosciences, 2021, 14(5): 1-9.

    Google Scholar

    [53] Fuge R, Johnson C C. Iodine and human health, the role of environmental geochemistry and diet, a review[J]. Applied Geochemistry, 2015, 63: 282-302.

    Google Scholar

    [54] Duborska E, Urik M, Bujdos M, et al. Influence of physicochemical properties of various soil types on iodide and iodate sorption[J]. Chemosphere, 2019, 214: 168-175.

    Google Scholar

    [55] Soderlund M, Virkanen J, Aromaa H, et al. Sorption and speciation of iodine in boreal forest soil[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 311(1): 549-564.

    Google Scholar

    [56] Lusa M, Bomberg M, Aromaa H, et al. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: Insights into the microbial impact[J]. Journal of Environmental Radioactivity, 2015, 143(5): 110-122.

    Google Scholar

    [57] Hong C L, Weng H X, Jilani G, et al. Evaluation of iodine and iodate for adsorption-desorption characteristics and bioavailability in three types of soil[J]. Biological Trace Element Research, 2012, 146(2): 262-271.

    Google Scholar

    [58] Yeager C M, Amachi S, Grandbois R, et al. Microbial transformation of iodine: From radioisotopes to iodine deficiency[J]. Advances in Applied Microbiology, 2017, 101: 83-136.

    Google Scholar

    [59] Qian K, Li J, Chi Z, et al. Natural organic matter-enhanced transportation of iodine in groundwater in the Datong Basin: Impact of irrigation activities[J]. Science of the Total Environment, 2020, 730: 138460.

    Google Scholar

    [60] Yoshida Y M S. Effects of microorganisms on the fate of iodine in the soil environment[J]. Geomicrobiology Journal, 1999, 16(1): 85-93.

    Google Scholar

    [61] Neeway J J, Kaplan D I, Bagwell C E, et al. A review of the behavior of radioiodine in the subsurface at two DOE sites[J]. Science of the Total Environment, 2019, 691: 466-475.

    Google Scholar

    [62] 严爱兰. 土壤碘的环境地球化学迁移研究[J]. 安徽农业科学, 2014, 42(16): 5056-5057.

    Google Scholar

    Yan A L. Environmental geochemical migration of iodine in soil[J]. Journal of Anhui Agricultural Sciences, 2014, 42(16): 5056-5057.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(4591) PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint