Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

ZHANG Lijuan, FANG Pengda, WANG Liqiang, WANG Jiasong. Determination of Uraniumand Thorium in Sandstone Uranium Deposits by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(5): 798-805. doi: 10.15898/j.cnki.11-2131/td.202202170022
Citation: ZHANG Lijuan, FANG Pengda, WANG Liqiang, WANG Jiasong. Determination of Uraniumand Thorium in Sandstone Uranium Deposits by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(5): 798-805. doi: 10.15898/j.cnki.11-2131/td.202202170022

Determination of Uraniumand Thorium in Sandstone Uranium Deposits by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion

  • BACKGROUND

    Sandstone-type uranium deposits are important strategic mineral resource. Rapid and accurate analysis of uranium and thorium content is of great significance to the evaluation and comprehensive utilization of this type of deposit. At present, the analysis of uranium and thorium is mainly determined by acid dissolution and alkali fusion methods to decompose samples. For the open acid dissolution method, the decomposition is often incomplete, resulting in lower results. The alkali fusion process is lengthy, which is not conducive to rapid detection. In addition, the high content of iron elements in sandstone type uranium deposits interfere with the measurement of uranium and thorium.

    OBJECTIVES

    To develop a method which can determine uranium and thorium in sandstone uranium deposits by inductively coupled plasma-optical emission spectrometry (ICP-OES) with microwave digestion.

    METHODS

    The samples were treated by microwave digestion technology, EDTA and triethanolamine mixed solution were added to the hydrochloric acid extract as masking agents to form a complex with iron ions in the solution, which effectively eliminated the interference of coexisting elemental iron on the determination of uranium and thorium. The experiment optimized the analytical spectral lines of each element, compared the amount of masking agent to obtain the best conditions, and basically eliminated the spectral line interference of coexisting elements by using the interference correction coefficient method.

    RESULTS

    The linear correlation coefficients of standard curves were greater than 0.9995, and the detection limit of uranium and thorium were 0.70μg/g, and 0.58μg/g, respectively. The relative error of the determination results of reference materials was 1.47%-1.82% and the relative standard deviation (RSD, n=12) was 1.32%-1.78%.

    CONCLUSIONS

    The method is simple to operate, effectively masking the interference of iron on uranium and thorium, and can be used to accurately complete the simultaneous determination of uranium and thorium in sandstone-type uranium deposits.

  • 加载中
  • [1] 陈军强, 曾威, 王佳营, 等. 全球和我国铀资源供需形势分析[J]. 华北地质, 2021, 44(2): 25-34.

    Google Scholar

    Chen J Q, Zeng W, Wang J Y, et al. Application of singularity theory in weak information extraction for ore prospecting in the Dalaimiao grassland-covered area[J]. North China Geology, 2021, 44(2): 25-34.

    Google Scholar

    [2] 郭冬发, 范光, 欧光习, 等. 与地浸型砂岩型铀矿有关的分析测试技术发展趋势[J]. 国外铀金地质, 2002, 19(3): 174-181.

    Google Scholar

    Guo D F, Fan G, Ou G X, et al. Development trend of analysis and testing technology related to in-situ leaching sandstone type uranium deposit[J]. Overseas Uranium and Gold Geology, 2002, 19(3): 174-181.

    Google Scholar

    [3] 司庆红, 俞礽安, 蔡洪广, 等. 鄂尔多斯盆地乃马岱地区直罗组砂岩元素地球化学特征及其地质意义[J]. 华北地质, 2021, 44(2): 49-57.

    Google Scholar

    Si Q H, Yu R A, Cai H G, et al. Element geochemical characteristics and geological significance of sandstones of Zhiluo Formation in uranium-bearing strata in Naimadai area, Ordos Basin[J]. North China Geology, 2021, 44(2): 49-57.

    Google Scholar

    [4] 马兴娟, 费发源, 甘彩霞, 等. 混合酸溶-ICP-MS法测定砂岩铀矿样品中的铀钍[J]. 现代科学仪器, 2016(3): 91-95.

    Google Scholar

    Ma X J, Fei F Y, Gan C X, et al. Quantification of uranium and thorium in sandstone uranium deposits by ICP-MS with mixed acid docomposition[J]. Modern Scientific Instruments, 2016(3): 91-95.

    Google Scholar

    [5] 封亚辉, 潘生林, 查燕青, 等. 波长色散X射线荧光光谱法测定钽铁和铌铁矿中钽铌铀钍[J]. 冶金分析, 2022, 42(3): 7-12.

    Google Scholar

    Feng Y H, Pan S L, Zha Y Q, et al. Determination of tantalum, niobium, uranium and thorium in tantalite and niobite by wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2022, 42(3): 7-12.

    Google Scholar

    [6] 姚杰祖, 张鑫, 宋茂生, 等. 激光荧光法测定五氧化二钒中的微量铀[J]. 铀矿冶, 2021, 40(4): 309-312.

    Google Scholar

    Yao J Z, Zhang X, Song M S, et al. Determination of trace uranium in vanadium pentoxide by laser fluorescence[J]. Uranium Mining and Metallurgy, 2021, 40(4): 309-312.

    Google Scholar

    [7] 时亮, 隋欣. 电感耦合等离子体-原子发射光谱法的应用[J]. 化工技术与开发, 2013(5): 17-21.

    Google Scholar

    Shi L, Sui X. Application of inductively coupled plasma-atomic emission spectrometry[J]. Technology & Development of Chemical lndustry, 2013(5): 17-21.

    Google Scholar

    [8] 李杰, 李珍, 胡新新, 等. 电感耦合等离子体发射光谱法测定绿茶中11种重金属元素[J]. 现代食品, 2021, 27(13): 156-159.

    Google Scholar

    Li J, Li Z, Hu X X, et al. Determination of 11 heavy metals in green tea by inductively coupled plasma-atomic emission spectrometry[J]. Modern Food, 2021, 27(13): 156-159.

    Google Scholar

    [9] 王董云, 赵慧, 段希英, 等. 微波消解电感耦合-等离子体发射光谱法同时测定复方氢氧化铝片中铝和镁含量[J]. 中国药业, 2021, 30(21): 76-78.

    Google Scholar

    Wang D Y, Zhao H, Duan X Y, et al. Simultaneous determination of aluminum and magnesium in compound aluminum hydroxide tablets by microwave digestion-ICP-OES[J]. China Pharmaceuticals, 2021, 30(21): 76-78.

    Google Scholar

    [10] 孙玲玲, 宋金明, 刘瑶, 等. 电感耦合等离子体发射光谱法(ICP-OES)测定海洋浮游生物中总磷的方法优化[J]. 海洋科学, 2020, 44(3): 85-92.

    Google Scholar

    Sun L L, Song J M, Liu Y, et al. Optimization of ICP-OES for the determination of total phosphorus in marine plankton[J]. Marine Sciences, 2020, 44(3): 85-92.

    Google Scholar

    [11] 王力强, 王家松, 魏双, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688-697.

    Google Scholar

    Wang L Q, Wang J S, Wei S, et al. Determination of W, Mo and 11 other elements in tungsten-molybdenum ores by inductively coupled plasma-optical emission spectrometry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688-697.

    Google Scholar

    [12] Yousefi S R, Zolfonoun E. On-line solid phase extraction using ion-pair microparticles combined with ICP-OES for the simultaneous preconcentration and determination of uranium and thorium[J]. De Gruyter, 2016, 104(11): 801-807.

    Google Scholar

    [13] Wang J, Liua J, Li H C, et al. Uranium and thorium leachability in contaminated stream sediments from a uranium minesite[J]. Journal of Geochemical Exploration, 2017, 176: 85-90.

    Google Scholar

    [14] Pradhan S K, Ambade B. A scheme for sequential separation of thorium, lanthanides, uranium in geo-materials and their ICP-OES determination[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021(329): 115-125.

    Google Scholar

    [15] 张莉娟, 安树清, 徐铁民, 等. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403.

    Google Scholar

    Zhang L J, An S Q, Xu T M, et al. Study on influcing factors for reduction capacity of gray-green sandstone in ordos sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 396-403.

    Google Scholar

    [16] 解原, 黄浩, 成景特, 等. 超声雾化-ICP-OES法测定铀矿尾渣中低含量的铀和钍[J]. 化学工程师, 2020, 34(5): 32-34.

    Google Scholar

    Xie Y, Huang H, Cheng J T, et al. Determination of low-content uranium and thorium in uranium ore tailings by ICP-OES with ultrasonic nebulization[J]. Chemical Engineer, 2020, 34(5): 32-34.

    Google Scholar

    [17] 王水锋, 郭敬华. 土壤和沉积物中铀、钍、钾、铅含量的测定[J]. 化学工程与技术, 2019, 9(6): 477-480.

    Google Scholar

    Wang S F, Guo J H. Determination of U, Th, K and Pb concentrations in soil and sediment[J]. Journal of Chemical Engineering and Technology, 2019, 9(6): 477-480.

    Google Scholar

    [18] 倪文山. 氢氧化镁共沉淀-电感耦合等离子体原子发射光谱法测定矿石样品中钍[J]. 冶金分析, 2013(1): 13-16.

    Google Scholar

    Ni W S. Determination of thorium in mineral samples by inductively coupled plasma atomic emission spectrometry after preconcentration through coprecipitation of magnesium hydroxide[J]. Metallurgical Analysis, 2013(1): 13-16.

    Google Scholar

    [19] 曾昭文, 郑成, 毛桃嫣, 等. 微波在化工过程中的研究及应用进展[J]. 化工学报, 2019, 70(增刊): 1-14.

    Google Scholar

    Zeng Z W, Zheng C, Mao T Y, et al. Progress in research and application of microwave in chemical process[J]. CIESC Journal, 2019, 70(Supplement): 1-14.

    Google Scholar

    [20] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348.

    Google Scholar

    Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340-348.

    Google Scholar

    [21] 曾江萍, 王家松, 郑智慷, 等. 高压密闭酸溶-电感耦合等离子体原子发射光谱法测定锑矿石中10种元素[J]. 理化检验(化学分册), 2021, 57(9): 788-793.

    Google Scholar

    Zeng J P, Wang J S, Zheng Z K, et al. Determination of 10 elements in antimony ore by inductively coupled plasma atom emission spectrometry with sealed acid digestion at high pressure[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(9): 788-793.

    Google Scholar

    [22] 孙秉怡, 全葳, 卢瑛, 等. 微波消解-激光荧光法测定土壤样品中微量铀[J]. 核化学与放射化学, 2017, 39(4): 268-272.

    Google Scholar

    Sun B Y, Quan W, Lu Y, et al. Determination of trace uranium in soil samples by microwave digestion-laser fluorescence method[J]. Journal of Nuclear and Radiochemistry, 2017, 39(4): 268-272.

    Google Scholar

    [23] 郭国龙, 王春叶, 丁红芳, 等. 微波消解-电感耦合等离子体质谱法测定粉煤灰中铀[J]. 冶金分析, 2019, 39(6): 20-23.

    Google Scholar

    Guo G L, Wang C Y, Ding H F, et al. Determination of uranium in coal fly ash by inductively coupled plasma mass spectrometry with micro wave digestion[J]. Metallurgical Analysis, 2019, 39(6): 20-23.

    Google Scholar

    [24] 汪君, 王頔, 邓长生, 等. 电感耦合等离子体发射光谱法测定地球化学样品中的钍[J]. 岩矿测试, 2014, 33(4): 501-505.

    Google Scholar

    Wang J, Wang D, Deng C S, et al. Determination of thorium in geochemical samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 501-505.

    Google Scholar

    [25] Li X Z, Xiong C, Sun K, et al. Optimization of ICP-OES's parameters for uranium analysis of rock samples[J]. Journal of the Korean Physical Society, 2021, 78: 737-742.

    Google Scholar

    [26] Sengupta A, Adya V, Godbole S. Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(3): 1259-1264.

    Google Scholar

    [27] 罗艳, 丛海霞, 赵中奇, 等. ICP-AES中多重谱线拟合(MSF)扣除光谱干扰法在Th、U测定中的应用[J]. 核化学与放射化学, 2015, 37(1): 37-40.

    Google Scholar

    Luo Y, Cong H X, Zhao Z Q, et al. ICP-AES with MSF for determination of Th and U[J]. Journal of Nuclear and Radiochemistry, 2015, 37(1): 37-40.

    Google Scholar

    [28] 刘欣, 臧旭芳, 时燕华. ICP-OES测量岩矿中铀的干扰分析[J]. 四川有色金属, 2019(3): 41-43.

    Google Scholar

    Liu X, Zang X F, Shi Y H. Analysis on uranium element measurement interference by inductively coupled plasma optical emission spectroscopy (ICP-OES)[J]. Sichuan Nonferrous Metals, 2019(3): 41-43.

    Google Scholar

    [29] 王攀峰, 邰文亮, 王斌, 等. 电感耦合等离子体发射光谱法测定土壤中的钍[J]. 江西化工, 2018(4): 48-50.

    Google Scholar

    Wang P F, Tai W L, Wang B, et al. Determination of thorium in soil by inductively coupled plasma-atomic emission spectrometry[J]. Jiangxi Chemical Industry, 2018(4): 48-50.

    Google Scholar

    [30] 王成玲. 电感耦合等离子体发射光谱法测定地质样品中的铀含量[J]. 化工时刊, 2018, 32(6): 20-22.

    Google Scholar

    Wang C L. Determination of uranium content in geological samples by inductively coupled plasma atomic emission spectrometry[J]. Chemical Industry Times, 2018, 32(6): 20-22.

    Google Scholar

    [31] 秦晓丽, 田贵, 李朝长等. 电感耦合等离子体发射光谱法同时测定地质样品中的钍和氧化钾[J]. 岩矿测试, 2019, 38(6): 741-746.

    Google Scholar

    Qin X L, Tian G, Li Z C, et al. Determination of thorium and potassium oxide in geological samples by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 741-746.

    Google Scholar

    [32] 于阗. 碱熔电感耦合等离子体发射光谱法测定矿石中钍[J]. 现代科学仪器, 2020(1): 174-176.

    Google Scholar

    Yu T. Determination of thorium in minerals by alkaline dissolution and inductively coupled plasma emission spectrometry[J]. Modern Scientific Instruments, 2020(1): 174-176.

    Google Scholar

    [33] Martins C A, Scheffler G L, Pozebon D, et al. Straight forward determination of U, Th and Hf at trace levels using ultrasonic nebulization and axial view ICP-OES[J]. Analytical Methods, 2016, 8: 504-509.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(2063) PDF downloads(210) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint