Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

WANG Na, WANG Jiasong, ZENG Jiangping, LI Qiang, WU Lei, CHEN Feng. Determination of Redox Potential of Sandstone-type Uranium Ore by Potential Drop Methods of Potassium Dichromate and Potassium Permanganate[J]. Rock and Mineral Analysis, 2022, 41(5): 806-814. doi: 10.15898/j.cnki.11-2131/td.202112080199
Citation: WANG Na, WANG Jiasong, ZENG Jiangping, LI Qiang, WU Lei, CHEN Feng. Determination of Redox Potential of Sandstone-type Uranium Ore by Potential Drop Methods of Potassium Dichromate and Potassium Permanganate[J]. Rock and Mineral Analysis, 2022, 41(5): 806-814. doi: 10.15898/j.cnki.11-2131/td.202112080199

Determination of Redox Potential of Sandstone-type Uranium Ore by Potential Drop Methods of Potassium Dichromate and Potassium Permanganate

More Information
  • BACKGROUND

    The redox potential is a quantitative indicator of the mixed redox potential of all substances in a system, which reflects the relative strength of the redox capacity of the whole system. It is of great significance to delineate the uranium enrichment horizon. The redox potential of sandstone-type uranium deposits controls the geochemical behavior of uranium and other variable valence elements, and is of great significance for accurately delineating uranium-enriched horizons. The potential difference method is used to measure the redox capacity of the sample by means of the oxidant solution, and the magnitude of the potential difference can accurately reflect the reducing ability of the reducing components in the sandstone-type uranium ore sample.

    OBJECTIVES

    To compare the two methods for the determination of the redox potential (ΔEh) of sandstone-type uranium ores.

    METHODS

    ΔEh of sandstone-type uranium ores was determined by two potential drop methods using potassium dichromate and potassium permanganate as oxidants. The effects of the solution medium concentration, oxidant concentration, equilibrium potential time, sample immersion time, and solid-liquid ratio of sample to oxidant solution on the determination of ΔEh were systematically studied. According to the optimal conditions of the two methods, 8 sandstone-type uranium samples were measured.

    RESULTS

    The ΔEh of the potassium dichromate method was between 15mV and 118mV, and the relative standard deviation was between 2.50% and 7.44%. The ΔEh of the potassium permanganate method was between 45mV and 89mV, with the relative standard deviation of 0.89%-1.42%. The two methods had significant consistency in determining the relative level of ΔEh of 8 sandstone-type uranium ore samples, and the correlation coefficient was 0.9882.

    CONCLUSIONS

    The ΔEh of the potassium dichromate potential drop method is more dispersed with a large range, and the difference in reducing ability between samples can be identified more intuitively. The ΔEh of the potassium permanganate potential drop method is more stable. The ΔEh values of sandstone-type uranium deposits measured by two potential drop methods can be used for the division of redox zoning.

  • 加载中
  • [1] 金若时, 张成江, 冯晓曦, 等. 流体混合对砂岩型铀矿成矿作用的影响[J]. 地质通报, 2014, 33(2-3): 354-358.

    Google Scholar

    Jin R S, Zhang C J, Feng X X, et al. The influence of fluid mixing on the mineralization of sandstone type uranium deposits[J]. Geological Bulletin of China, 2014, 33(2-3): 354-358.

    Google Scholar

    [2] 付勇, 魏帅超, 金若时, 等. 我国砂岩型铀矿分布特征研究现状及存在问题[J]. 地质学报, 2016, 90(12): 3519-3544. doi: 10.3969/j.issn.0001-5717.2016.12.018

    CrossRef Google Scholar

    Fu Y, Wei S C, Jin R S, et al. Current status and existing problems of China's sandstone-type uranium deposits[J]. Acta Geologica Sinica, 2016, 90(12): 3519-3544. doi: 10.3969/j.issn.0001-5717.2016.12.018

    CrossRef Google Scholar

    [3] 刘武生, 赵兴齐, 史清平, 等. 中国北方砂岩型铀矿成矿作用与油气关系研究[J]. 中国地质, 2017, 44(2): 279-287.

    Google Scholar

    Liu W S, Zhao X Q, Shi Q P, et al. Research on relationship of oil-gas and sandstone-type uranium mineralization of northern China[J]. Geology in China, 2017, 44(2): 279-287.

    Google Scholar

    [4] 刘汉彬, 李子颖, 秦明宽, 等. 鄂尔多斯盆地北部砂岩型铀矿地球化学研究进展[J]. 地学前缘, 2012, 19(3): 139-146.

    Google Scholar

    Liu H B, Li Z Y, Qin M K, et al. Progress in geochemistry of sandstone-type uranium deposit in North Ordos Basin[J]. Earth Science Frontiers, 2012, 19(3): 139-146.

    Google Scholar

    [5] 金若时, 滕雪明. 中国北方砂岩型铀矿大规模成矿作用[J]. 华北地质, 2022, 45(1): 42-57.

    Google Scholar

    Jin R S, Teng X M. Large scale sandstone-type uranium mineralization in northern China[J]. North China Geology, 2022, 45(1): 42-57.

    Google Scholar

    [6] 孙占学, 马文洁, 刘亚洁, 等. 地浸采铀矿山地下水环境修复研究进展[J]. 地学前缘, 2021, 28(5): 215-225. doi: 10.13745/j.esf.sf.2021.2.11

    CrossRef Google Scholar

    Sun Z X, Ma W J, Liu Y J, et al. Research progress on groundwater contamination and remediation in in situ leaching uranium mines[J]. Earth Science Frontiers, 2021, 28(5): 215-225. doi: 10.13745/j.esf.sf.2021.2.11

    CrossRef Google Scholar

    [7] 李子颖, 方锡珩, 陈安平, 等. 鄂尔多斯盆地北部砂岩型铀矿目标层灰绿色砂岩成因[J]. 中国科学(地球科学), 2007, 37(增刊): 139-146.

    Google Scholar

    Li Z Y, Fang X H, Chen A P, et al. Origin of grey-green sandstones in the target layer of sandstone-type uranium deposits in the northern Ordos Basin[J]. Science in China (Earth Science), 2007, 37(Supplement): 139-146.

    Google Scholar

    [8] 王琳. 地浸砂岩型铀矿钻探施工技术[J]. 现代矿业, 2021(4): 223-225. doi: 10.3969/j.issn.1674-6082.2021.04.057

    CrossRef Google Scholar

    Wang L. Drilling construction technology for in-situ leaching sandstone-type uranium deposit[J]. Modern Mining, 2021(4): 223-225. doi: 10.3969/j.issn.1674-6082.2021.04.057

    CrossRef Google Scholar

    [9] 苗培森, 陈印, 程银行, 等. 中国北方砂岩型铀矿深部探测新发现及其意义[J]. 大地构造与成矿学, 2020, 44(4): 563-575.

    Google Scholar

    Miao P S, Chen Y, Cheng Y H, et al. New deep exploration discoveries of sandstone-type uranium deposits in North China[J]. Geotectonica et Metallogenia, 2020, 44(4): 563-575.

    Google Scholar

    [10] 原渊, 苏学斌, 李建华, 等. 世界地浸采铀矿山生产现状与进展[J]. 中国矿业, 2018, 27(1): 59-61.

    Google Scholar

    Yuan Y, Su X B, Li J H, et al. Production status and development of the world in-situ leaching of uranium mines[J]. China Mining Magazine, 2018, 27(1): 59-61.

    Google Scholar

    [11] 吉宏斌, 阳奕汉, 孙占学, 等. 地浸采铀过程中的矿层解堵增渗技术及现场应用[J]. 湿法冶金, 2017, 36(2): 143-147.

    Google Scholar

    Ji H B, Yang Y H, Sun Z X, et al. Technology on removing blockage and increasing permeability of ore layer and its production application[J]. Hydrometallurgy of China, 2017, 36(2): 143-147.

    Google Scholar

    [12] 袁富蕴, 刘峰. 测定电位差圈定火山岩富铀层位[J]. 四川大学学报(工程科学版), 2000, 32(5): 29-31.

    Google Scholar

    Yuan F Y, Liu F. Searching for rich uranium layers of volcanic rocks by measuring potential difference[J]. Journal of Sichuan University (Engineering Science Edition), 2000, 32(5): 29-31.

    Google Scholar

    [13] 孙占学, 刘金辉, 朱永刚, 等. 砂岩铀矿成矿过程与氧化还原分带: 铀系不平衡证据[J]. 地球科学——中国地质大学学报, 2004, 29(2): 224-230.

    Google Scholar

    Sun Z X, Liu J H, Zhu Y G, et al. Ore-forming process and redox zoning of sandstone-type U deposits: Evidencefrom U series disequilibrium[J]. Earth Science—Journal of China University of Geosciences, 2004, 29(2): 224-230.

    Google Scholar

    [14] 张卫民, 刘金辉, 李学礼, 等. 水岩体系Eh-pH法在砂岩型铀矿层间氧化带划分中的应用——以新疆伊犁盆地512铀矿床为例[J]. 地球学报, 2003, 24(1): 85-90.

    Google Scholar

    Zhang W M, Liu J H, Li X L, et al. Application of the water-rock system Eh-pH method to the division of the interlayer oxidation zone in the sandstone type uranium ore[J]. Acta Geosicientia Sinica, 2003, 24(1): 85-90.

    Google Scholar

    [15] 宋洪柱, 王东东, 刘建强, 等. 东胜矿区深部直罗组氧化还原环境与砂岩型铀矿特征[J]. 中国煤炭地质, 2015, 27(7): 55-61.

    Google Scholar

    Song H Z, Wang D D, Liu J Q, et al. Zhiluo Formation redox environment and sandstone-type uranium deposit characteristics in deep part Dongsheng mining area[J]. Goal Geology of China, 2015, 27(7): 55-61.

    Google Scholar

    [16] Christophe B, Liu X D, Yan Z B, et al. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China[J]. Ore Geology Reviews, 2017, 82(4): 108-129.

    Google Scholar

    [17] Cumberland S A, Douglas G, Grice K, et al. Uraniummobility in organic matter-rich sediments: A review of geological and geochemical processes[J]. Earth-Science Reviews, 2016, 159(5): 160-185.

    Google Scholar

    [18] 张玉燕, 刘红旭, 修小茜. 我国北西部地区层间氧化带砂岩型铀矿床微生物与铀成矿作用研究初探[J]. 地质学报, 2016, 90(12): 3508-3518.

    Google Scholar

    Zhang Y Y, Liu H X, Xiu X Q. Relationship between micro-organisms and uranium metallogeny of the interlayer oxidation zone sandstone-type uranium deposits in NW China[J]. Acta Geologica Sinica, 2016, 90(12): 3508-3518.

    Google Scholar

    [19] Shamim A, Yang X Y, Franco P. Sandstone type uranium deposits in the Ordos Basin, northwest China: A case study and an overview[J]. Journal of Asian Earth Sciences, 2017, 146(9): 367-382.

    Google Scholar

    [20] 张莉娟, 安树清, 徐铁民, 等. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403.

    Google Scholar

    Zhang L J, An S Q, Xu T M, et al. Study on influcing factors for reduction capacity of gray-green sandstone in ordos sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 396-403.

    Google Scholar

    [21] 向交, 徐丽萍, 李和平, 等. 氧化还原电位的研究及应用[J]. 地球与环境, 2014, 42(3): 430-436.

    Google Scholar

    Xiang J, Xu L P, Li H P, et al. Research on and application of oxidation-reduction potential[J]. Earth and Environment, 2014, 42(3): 430-436.

    Google Scholar

    [22] 洪妍, 郭秋梅, 董铁有, 等. ORP的测量及数显ORP标定的原理[J]. 河南科技大学学报(自然科学版), 2006, 27(1): 18-20.

    Google Scholar

    Hong Y, Guo Q M, Dong T Y, et al. ORP measuring mechanism and calibration standards and principles for digital ORP meters[J]. Journal of Henan University of Science and Technology (Natural Science), 2006, 27(1): 18-20.

    Google Scholar

    [23] 王爱军, 石超英. 去极化方法测定海水的氧化还原电位初探[J]. 海洋技术, 2010, 29(2): 120-122.

    Google Scholar

    Wang A J, Shi C Y. Primary study on the seawater ORP by depolarization curve method[J]. Ocean Technology, 2010, 29(2): 120-122.

    Google Scholar

    [24] 王媛, 李铁龙, 刘大喜, 等. 电位测定法测海水氧化还原电位的不确定度评定[J]. 南开大学学报(自然科学版), 2010, 29(2): 120-122.

    Google Scholar

    Wang Y, Li T L, Liu D X, et al. Evaluation on uncertainty of measurement for standard solutions of oxidation-reduction potential[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2010, 29(2): 120-122.

    Google Scholar

    [25] 王娜, 王家松, 曾江萍, 等. 电位落差法测定砂岩型铀矿氧化还原电位初探[J]. 地质调查与研究, 2019, 42(4): 267-270.

    Google Scholar

    Wang N, Wang J S, Zeng J P, et al. Primary study on oxidation-reduction potential of sandstone-type uranium deposit by measuring potential difference[J]. Geologycal Survey and Research, 2019, 42(4): 267-270.

    Google Scholar

    [26] 王剑锋. 氧化还原电位法的原理和测定方法[J]. 地质与勘探, 1981, 2(3): 24-30.

    Google Scholar

    Wang J F. Principle and measurement method of oxidation-reduction potential method[J]. Geology and Exploration, 1981, 2(3): 24-30.

    Google Scholar

    [27] 吴金浩, 刘桂英, 王年斌, 等. 辽东湾北部海域表层沉积物氧化还原电位及其主要影响因素[J]. 沉积学报, 2012, 30(2): 333-339.

    Google Scholar

    Wu J H, Liu G Y, Wang N B, et al. The Eh in surface sediments in the northern of Liaodong Bay and its main influencing factors[J]. Acta Sedimentologica Sinica, 2012, 30(2): 333-339.

    Google Scholar

    [28] 毛凌晨, 叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10): 1669-1676.

    Google Scholar

    Mao L C, Ye H. Influence of redox potential on heavy metal behavior in soils: A review[J]. Research of Environmental Sciences, 2018, 31(10): 1669-1676.

    Google Scholar

    [29] 余桂梁. 非碳酸盐岩样氧化还原电位的测定法[J]. 铀矿地质, 1992(1): 57-59.

    Google Scholar

    Yu G L. A method for the determination of redox potential of non-carbonate rock samples[J]. Uranium Geology, 1992(1): 57-59.

    Google Scholar

    [30] 闵洁. 氧化还原电位测定仪测得值的不确定度分析[J]. 计量与测试技术, 2019, 46(4): 112-113.

    Google Scholar

    Min J. Uncertainty evaluation of measurement result of oxidation-reduction potential meter[J]. Metrology & Measurement Technique, 2019, 46(4): 112-113.

    Google Scholar

    [31] 刘筱雪, 方帷, 李晓, 等. 氧化还原电位去极化法及铂电极直接测定法对比研究[J]. 分析科学学报, 2017, 33(6): 851-854.

    Google Scholar

    Liu X X, Fang W, Li X, et al. Comparative study of the depolarization curve method and platinum electrode direct determination method[J]. Journal of Analytical Science, 2017, 33(6): 851-854.

    Google Scholar

    [32] 张松豹, 曹月明. 沉积型赤铁矿、菱铁矿和黄铁矿氧化还原电位测量及其地球化学意义[J]. 中国矿业大学学报, 1992, 21(2): 59-64.

    Google Scholar

    Zhang S B, Cao Y M. Measurement of redox potential of sedimentary hematite, siderite and ryrite and its geochemical significance[J]. Journal of China University of Mining & Technology, 1992, 21(2): 59-64.

    Google Scholar

    [33] 夏建明, 王恩德, 赵纯福, 等. 弓长岭富铁矿氧化还原环境的形成机制[J]. 东北大学学报(自然科学版), 2011, 32(11): 1643-1646.

    Google Scholar

    Xia J M, Wang E D, Zhao C F, et al. The formation mechanism of the redox environment in the rich iron deposits of Gongchangling[J]. Journal of Northeastern University(Natural Science), 2011, 32(11): 1643-1646.

    Google Scholar

    [34] 马景治, 王峰, 冯莉, 等. 重铬酸钾滴定法测定铁矿石中亚铁含量方法的改进[J]. 中国无机分析化学, 2017, 7(1): 39-42.

    Google Scholar

    Ma J Z, Wang F, Feng L, et al. Method improvement for determination of ferrous iron in iron ore by potassium dichromate titrmetry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(1): 39-42.

    Google Scholar

    [35] 周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305.

    Google Scholar

    Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305.

    Google Scholar

    [36] 夏传波, 成学海, 张会堂, 等. 熔融制样-X射线荧光光谱法测定电气石中12种主次量元素[J]. 岩矿测试, 2018, 37(1): 36-42.

    Google Scholar

    Xia C H, Cheng X H, Zhang H T, et al. Determination of twelve major and minor elements in tourmaline by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(1): 36-42.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(6)

Article Metrics

Article views(1828) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint