Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

SHANG Wenyu, SUN Jingyi, XIE Manman, CEN Kuang, CAI Ze, ZHAN Nan, LING Yuan, SUN Qing. Py-GC/MS Analysis Method for Aliphatic Biomarker in Desert Lake Sediment and Its Application in Paleoclimatic Study[J]. Rock and Mineral Analysis, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009
Citation: SHANG Wenyu, SUN Jingyi, XIE Manman, CEN Kuang, CAI Ze, ZHAN Nan, LING Yuan, SUN Qing. Py-GC/MS Analysis Method for Aliphatic Biomarker in Desert Lake Sediment and Its Application in Paleoclimatic Study[J]. Rock and Mineral Analysis, 2022, 41(5): 836-848. doi: 10.15898/j.cnki.11-2131/td.202201120009

Py-GC/MS Analysis Method for Aliphatic Biomarker in Desert Lake Sediment and Its Application in Paleoclimatic Study

More Information
  • BACKGROUND

    Methylene chain backbone compounds (MCCs) in lake sediments are sensitive to climate change, and changes in environmental conditions could promote the transformation of MCCs lipids between free and bound states, hence providing a series of biomarkers for paleoclimate reconstruction. In previous studies, free MCCs lipids were typically extracted by mixed solvents, bound MCCs lipids with chemical bonding or physical adsorption could not be obtained by organic solvent extraction, and the indicator information of the characteristics of bound components on paleoclimate change was missing.

    OBJECTIVES

    To study the suitable analytical conditions for bound MCCs lipids, and establish proxy based on bound MCCs lipids to provide an effective tool for paleoclimate reconstruction of terrestrial ecosystems.

    METHODS

    Optimized analytical method of pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) was established and used to evaluate the bound MCCs in typical Desert Lake sediment.

    RESULTS

    Total of 71 bound MCCs compounds were identified and analyzed based on fine characterization of organic matter composition in the sediments of the Yiheshariwusu Lake in Inner Mongolia. Pyrolysis temperature was the main factor affecting the distribution characteristics of bound MCCs in sediment. Low pyrolysis energy under 450℃ led to insufficient resolution of bound MCCs. At 550℃ and 650℃, total bound n-alkanes, n-alkenes, and n-alkan-2-ones were on-line separated, identified and analyzed. The average chain length characteristics of bound n-alkanes at 550℃ and the carbon isotope of free n-alkanes as a traditional climate substitute index δ13C27-33 had the best correlation (R=0.83, n=11, p < 0.01).

    CONCLUSIONS

    Proxy ACL25-31 of bound n-alkanes respond to the change characteristics of regional effective precipitation, identify the drought periods around 5.6ka and 3.9ka in the region, reflect the intensity change of East Asian summer monsoon, and correspond to the change of effective precipitation in the mid-latitude of the northern hemisphere.

  • 加载中
  • [1] Naafs B D A, Inglis G N, Blewett J, et al. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review[J]. Global and Planetary Change, 2019, 179: 57-79. doi: 10.1016/j.gloplacha.2019.05.006

    CrossRef Google Scholar

    [2] Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment[J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4

    CrossRef Google Scholar

    [3] Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K. Ⅰ: Source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991, 17(6): 901-912. doi: 10.1016/0146-6380(91)90031-E

    CrossRef Google Scholar

    [4] Sun Q, Chu G Q, Liu M, et al. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Research, 2011, 116(G1): 79-89.

    Google Scholar

    [5] Chu G Q, Sun Q, Xie M M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China[J]. Quaternary Science Reviews, 2014, 102: 85-95. doi: 10.1016/j.quascirev.2014.08.008

    CrossRef Google Scholar

    [6] Jambrina-Enríquez M, Sachse D, Valero-Garcés B L. A deglaciation and Holocene biomarker-based recon-struction of climate and environmental variability in NW Iberian Peninsula: The Sanabria Lake sequence[J]. Journal of Paleolimnology, 2016, 56(1): 49-66. doi: 10.1007/s10933-016-9890-6

    CrossRef Google Scholar

    [7] Zhang Y, Meyers P A, Liu X, et al. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China[J]. Quaternary Science Reviews, 2016, 152: 19-30. doi: 10.1016/j.quascirev.2016.09.016

    CrossRef Google Scholar

    [8] Yan Y, Zhao B, Xie L, et al. Trend reversal of soil n-alkane carbon preference index (CPI) along the precipitation gradient and its paleoclimatic implication[J]. Chemical Geology, 2021, 581: 1-10.

    Google Scholar

    [9] Xie S, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2849-2862. doi: 10.1016/j.gca.2003.08.025

    CrossRef Google Scholar

    [10] Barakat A O, Rullk tter J. Extractable and bound fatty acids in core sediments from the N rdlinger Ries, southern Germany[J]. Fuel, 1995, 74(3): 416-425. doi: 10.1016/0016-2361(95)93476-T

    CrossRef Google Scholar

    [11] 王江涛, 杨庶, 谭丽菊, 等. 浙江南部近海沉积物柱状样中脂类生物标志物的组成及形态分布[J]. 海洋学报, 2011, 33(5): 83-90.

    Google Scholar

    Wang J T, Yang S, Tan L J, et al. Composition and form distribution of lipids biomarkers in a sediment core from southern coastal area of Zhejiang Province[J]. Marine Sciences, 2011, 33(5): 83-90.

    Google Scholar

    [12] Kaal J, Lantes-Suárez O, Martínez Cortizas A, et al. How useful is pyrolysis-GC/MS for the assessment of molecular properties of organic matter in Archaeological Pottery Matrix? An exploratory case study from North-West Spain[J]. Archaeometry, 2014, 56: 187-207. doi: 10.1111/arcm.12057

    CrossRef Google Scholar

    [13] Li J, Chen Y, Yang H, et al. The correlation of feedstock and bio-oil compounds distribution[J]. Energy Fuels, 2017, 31(7): 7093-7100. doi: 10.1021/acs.energyfuels.7b00545

    CrossRef Google Scholar

    [14] 王娜, 张学芹, 雷勇, 等. 故宫太和殿护板灰有机组分的红外光谱及热裂解-气相色谱/质谱分析[J]. 文物保护与考古科学, 2018, 30(2): 121-126.

    Google Scholar

    Wang N, Zhang X Q, Lei Y, et al. FTIR and Py-GC/MS analysis of organic materials used in the guard board mortar of Taihe Dian, the Forbidden City[J]. Sciences of Conservation and Archaeology, 2018, 30(2): 121-126.

    Google Scholar

    [15] van der Kaaden A, Boon J J, Haverkamp J. The analytical pyrolysis of carbohydrates. 2-Differentiation of homopolyhexoses according to their linkage type, by pyrolysis-mass spectrometry and pyrolysis-gas chromatography/mass spectrometry[J]. Biomedical Mass Spectrometry, 1984, 11(9): 486-492. doi: 10.1002/bms.1200110910

    CrossRef Google Scholar

    [16] Genuit W, Boon J J. Pyrolysis-gas chromatography-photoionization-mass spectrometry, a new approach in the analysis of macromolecular materials[J]. Journal of Analytical and Applied Pyrolysis, 1985, 8: 25-40. doi: 10.1016/0165-2370(85)80012-7

    CrossRef Google Scholar

    [17] van der Heijden E, Boon J, Rasmussen S, et al. Sphagnum acid and its decarboxylation product isopropenylphenol as biomarkers for fossilised[J]. Ancient Biomolecules, 1997, 1(2): 93-93.

    Google Scholar

    [18] Schellekens J, Bradley J A, Kuyper T W, et al. The use of plant-specific pyrolysis products as biomarkers in peat deposits[J]. Quaternary Science Reviews, 2015, 123: 254-264. doi: 10.1016/j.quascirev.2015.06.028

    CrossRef Google Scholar

    [19] Schellekens J, Buurman P, Pontevedra-Pombal X. Selecting parameters for the environmental interpretation of peat molecular chemistry-A pyrolysis-GC/MS study[J]. Organic Geochemistry, 2009, 40(6): 678-691. doi: 10.1016/j.orggeochem.2009.03.006

    CrossRef Google Scholar

    [20] Ninnes S, Tolu J, Meyer-Jacob C, et al. Investigating molecular changes in organic matter composition in two Holocene lake-sediment records from central Sweden using pyrolysis-GC/MS[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(6): 1423-1438. doi: 10.1002/2016JG003715

    CrossRef Google Scholar

    [21] Kaal J, Cortizas A M, Rydberg J, et al. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssj n, Sweden[J]. Organic Geochemistry, 2015, 83-84: 253-262. doi: 10.1016/j.orggeochem.2015.04.005

    CrossRef Google Scholar

    [22] Sanjurjo-Sánchez J, Kaal J, Fenollós J L M. Organic matter from bevelled rim bowls of the Middle Euphrates: Results from molecular characterization using pyrolysis-GC-MS[J]. Microchemical Journal, 2018, 141: 1-6. doi: 10.1016/j.microc.2018.05.001

    CrossRef Google Scholar

    [23] Melenevskii V, Leonova G, Bobrov V, et al. Transformation of organic matter in the Holocene sediments of Lake Ochki (South Baikal region): Evidence from pyrolysis data[J]. Geochemistry International, 2015, 53(10): 903-921. doi: 10.1134/S0016702915080054

    CrossRef Google Scholar

    [24] Kumar M, Boski T, Lima-Filho F P, et al. Environmental changes recorded in the Holocene sedimentary infill of a tropical estuary[J]. Quaternary International, 2018, 476: 34-45. doi: 10.1016/j.quaint.2018.03.006

    CrossRef Google Scholar

    [25] Kaal J, Cortizas A M, Eckmeier E, et al. Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: A case study from Campo Lameiro (NW Spain)[J]. Journal of Archaeological Science, 2008, 35(8): 2133-2143. doi: 10.1016/j.jas.2008.01.013

    CrossRef Google Scholar

    [26] Carr A S, Boom A, Chase B M, et al. Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: An example from the southern Cape coastline of South Africa[J]. Journal of Paleolimnology, 2010, 44(4): 947-961. doi: 10.1007/s10933-010-9466-9

    CrossRef Google Scholar

    [27] Li Z, Zhang Z, Xue Z, et al. Molecular fingerprints of soil organic matter in a typical freshwater wetland in northeast China[J]. Chinese Geographical Science, 2019, 29(4): 700-708. doi: 10.1007/s11769-019-1062-y

    CrossRef Google Scholar

    [28] Lu X, Ma S, Chen Y, et al. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China[J]. Biomolecules, 2018, 8(154): 1-12.

    Google Scholar

    [29] Li Z, Zhang Z, Li M, et al. Molecular fingerprints of soil organic carbon in wetlands covered by native and non-native plants in the Yellow River Delta[J]. Wetlands, 2020(2): 1-10.

    Google Scholar

    [30] Chen Q, Wu Y, Lei T, et al. Study on the fingerprints of soil organic components in Alpine grassland based on Py-GC-MS/MS technology[J]. Acta Ecologica Sinica, 2018, 38(8): 2864-2873.

    Google Scholar

    [31] Xie M, Sun Q, Dong H, et al. n-alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, northeastern China[J]. The Holocene, 2020, 30(10): 1451-1461. doi: 10.1177/0959683620932968

    CrossRef Google Scholar

    [32] 丛浦珠, 苏克曼. 分析化学手册: 质谱分析(第九分册)[M]. 北京: 化学工业出版社, 2000.

    Google Scholar

    Cong P Z, Su K M. Handbook of analytical chemistry: Mass spectrometry (Volume 9)[M]. Beijing: Chemical Industry Press, 2000.

    Google Scholar

    [33] McClymont E L, Bingham E M, Nott C J, et al. Pyrolysis GC-MS as a rapid screening tool for determination of peat-forming plant composition in cores from ombrotrophic peat[J]. Organic Geochemistry, 2011, 42(11): 1420-1435. doi: 10.1016/j.orggeochem.2011.07.004

    CrossRef Google Scholar

    [34] Schellekens J, Buurman P. n-alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation[J]. Geoderma, 2011, 164(3-4): 112-121. doi: 10.1016/j.geoderma.2011.05.012

    CrossRef Google Scholar

    [35] Moldoveanu S C. Pyrolysis GC/MS, present and future (recent past and present needs)[J]. Journal of Microcolumn Separations, 2001, 13(3): 102-125. doi: 10.1002/mcs.1028

    CrossRef Google Scholar

    [36] Zhang H, Liao W, Zhou X, et al. Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar[J]. Bioresource Technology, 2022, 344: 1-10.

    Google Scholar

    [37] Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil As a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21): 11770-11778.

    Google Scholar

    [38] Cui D, Li J, Zhang X, et al. Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 1-10.

    Google Scholar

    [39] Fabbri D, Adamiano A, Falini G, et al. Analytical pyro-lysis of dipeptides containing proline and amino acids with polar side chains. Novel 2, 5-diketopiperazine markers in the pyrolysates of proteins[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 145-155. doi: 10.1016/j.jaap.2012.02.001

    CrossRef Google Scholar

    [40] Zhu R, Versteegh G J M, Hinrichs K U. Detection of microbial biomass in subseafloor sediment by pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 175-180. doi: 10.1016/j.jaap.2016.02.002

    CrossRef Google Scholar

    [41] Lara-Gonzalo A, Kruge M A, Lores I, et al. Pyrolysis GC-MS for the rapid environmental forensic screening of contaminated brownfield soil[J]. Organic Geochemistry, 2015, 87: 9-20. doi: 10.1016/j.orggeochem.2015.06.012

    CrossRef Google Scholar

    [42] Kaal J, Martinez C A, Mateo M A, et al. Deci-phering organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting[J]. Science of the Total Environment, 2020, 742: 1-19.

    Google Scholar

    [43] Zúñiga D, Kaal J, Villacieros-Robineau N, et al. Tracing sinking organic matter sources in the NW Iberian upwelling system (NE Atlantic Ocean): Comparison between elemental, isotopic and molecular indicators[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 114-122. doi: 10.1016/j.jaap.2019.01.016

    CrossRef Google Scholar

    [44] Kruge M A, Permanyer A. Application of pyrolysis-GC/MS for rapid assessment of organic contamination in sediments from Barcelona Harbor[J]. Organic Geochemistry, 2004, 35(11): 1395-1408.

    Google Scholar

    [45] Lewis J M T, Najorka J, Watson J S, et al. The search for Hesperian organic matter on Mars: Pyrolysis studies of sediments rich in sulfur and iron[J]. Astrobiology, 2018, 18(4): 454-464. doi: 10.1089/ast.2017.1717

    CrossRef Google Scholar

    [46] Zhang Y, Yang K, Du J, et al. Chemical characterization of fractions of dissolved humic substances from a marginal sea-A case from the Southern Yellow Sea[J]. Journal of Oceanology and Limnology, 2018, 36(2): 238-248. doi: 10.1007/s00343-017-6202-6

    CrossRef Google Scholar

    [47] Kumar M, Boski T, González-Vila F J, et al. Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa Lagoon (South Portugal)[J]. Environmental Science and Pollution Research, 2020, 27(23): 28962-28985. doi: 10.1007/s11356-020-09235-9

    CrossRef Google Scholar

    [48] Tolu J, Gerber L, Boily J F, et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multi-variate curve resolution: A promising analytical tool in (paleo)limnology[J]. Analytica Chimica Acta, 2015, 880: 93-102. doi: 10.1016/j.aca.2015.03.043

    CrossRef Google Scholar

    [49] Sigleo A C, Hoering T C, Helz G R. Composition of estuarine colloidal material: Organic components[J]. Geochimica et Cosmochimica Acta, 1982, 46(9): 1619-1626. doi: 10.1016/0016-7037(82)90318-0

    CrossRef Google Scholar

    [50] Kaal J. Analytical pyrolysis in marine environments revi-sited[J]. Analytical Pyrolysis Letters, 2019, 6: 1-16.

    Google Scholar

    [51] Wang Q, Wang X M, Shuo P. Study on the structure, pyrolysis kinetics, gas release, reaction mechanism, and pathways of Fushun oil shale and kerogen in China[J]. Fuel Processing Technology, 2022, 225(107058): 1-11.

    Google Scholar

    [52] Boateng A A, Hicks K B, Vogel K P. Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity[J]. Journal of Analytical & Applied Pyrolysis, 2006, 75(2): 55-64.

    Google Scholar

    [53] Liu H, Yuan P, Liu D, et al. Pyrolysis behaviors of organ-ic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals[J]. Applied Clay Science, 2018, 153: 205-216. doi: 10.1016/j.clay.2017.12.028

    CrossRef Google Scholar

    [54] Faure P, Jeanneau L, Lannuzel F. Analysis of organic matter by flash pyrolysis-gas chromatography-mass spectrometry in the presence of Na-smectite: When clay minerals lead to identical molecular signature[J]. Organic Geochemistry, 2006, 37(12): 1900-1912. doi: 10.1016/j.orggeochem.2006.09.008

    CrossRef Google Scholar

    [55] Zhang J, Wu C, Hou W, et al. Biological calcium car-bonate with a unique organic-inorganic composite structure to enhance biochar stability[J]. Environmental Science: Processes & Impacts, 2021, 23(11): 1747-1758.

    Google Scholar

    [56] Meyers P A. Organic geochemical proxies of paleoceano-graphic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1

    CrossRef Google Scholar

    [57] 沈吉, 刘兴起, Matsumoto R, 等. 晚冰期以来青海湖沉积物多指标高分辨率的古气候演化[J]. 中国科学: 地球科学, 2004, 34(6): 582-589.

    Google Scholar

    Shen J, Liu X Q, Matsumoto R, et al. Multi index and high-resolution paleoclimate evolution of sediments in Qinghai Lake since late glacial period[J]. Science in China Series D: Earth Sciences, 2004, 34(6): 582-589.

    Google Scholar

    [58] Zhang J R, Jia Y L, Lai Z P, et al. Holocene evo-lution of Huangqihai Lake in semi-arid northern China based on sedimentology and luminescence dating[J]. Holocene, 2011, 21(8): 1261-1268. doi: 10.1177/0959683611405232

    CrossRef Google Scholar

    [59] Sun Q, Zhou J, Shen J, et al. Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai, north environment sensitive zone, China[J]. Science in China Series D: Earth Sciences, 2006, 49(9): 968-981. doi: 10.1007/s11430-006-0968-2

    CrossRef Google Scholar

    [60] 温锐林, 肖举乐, 常志刚, 等. 全新世呼伦湖区植被和气候变化的孢粉记录[J]. 第四纪研究, 2010, 30(6): 1105-1115.

    Google Scholar

    Wen R L, Xiao J L, Chang Z G, et al. Holocene vegetation and climate changes reflected by the pollen record of Hulun Lake, north-eastern Inner Mongolia[J]. Quaternary Sciences, 2010, 30(6): 1105-1115.

    Google Scholar

    [61] 陈发虎, 吴薇, 朱艳, 等. 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报, 2004, 49(1): 1-9.

    Google Scholar

    Chen F H, Wu W, Zhu Y, et al. Lake records of middle Holocene drought events in Alxa Plateau[J]. Chinese Science Bulletin, 2004, 49(1): 1-9.

    Google Scholar

    [62] Nierop K, Jansen B, Hageman J A, et al. The complementarity of extractable and ester-bound lipids in a soil profile under pine[J]. Plant & Soil, 2006, 286(1-2): 269-285.

    Google Scholar

    [63] Angst G, Cajthaml T, Angst Š, et al. Performance of base hydrolysis methods in extracting bound lipids from plant material, soils, and sediments[J]. Organic Geochemistry, 2017, 113: 97-104. doi: 10.1016/j.orggeochem.2017.08.004

    CrossRef Google Scholar

    [64] Jia Q H, Sun Q, Xie M M, et al. Normal alkane distributions in soil samples along a Lhasa-Bharatpur Transect[J]. Acta Geologica Sinica (English Edition), 2016, 90(2): 738-748. doi: 10.1111/1755-6724.12701

    CrossRef Google Scholar

    [65] Pu Y, Zhang H C, Lei G L, et al. Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3[J]. Science China (Earth Sciences), 2010, 53(6): 863-870. doi: 10.1007/s11430-010-0075-2

    CrossRef Google Scholar

    [66] Baker A, Routh J, Roychoudhury A N. n-alkan-2-one biomarkers as a proxy for palaeoclimate reconstruction in the Mfabeni Fen, South Africa[J]. Organic Geochemistry, 2018, 120: 75-85. doi: 10.1016/j.orggeochem.2018.03.001

    CrossRef Google Scholar

    [67] Zhang Y, Huang X, Wang R, et al. The distribution of long-chain n-alkan-2-ones in peat can be used to infer past changes in pH[J]. Chemical Geology, 2020, 544(119622): 1-17.

    Google Scholar

    [68] Chen L, Zhou W, Zhang Y, et al. Postglacial floral and climate changes in southeastern China recorded by distributions of n-alkan-2-ones in the Dahu sediment-peat sequence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538(109448): 1-8.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1581) PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint