Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

CHU Linlin, WANG Jingyun, JIN Xiaoxia, WANG Bifen, KONG Cuiyu. Determination of Hexavalent Chromium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Alkaline Digestion-Ion Exchange[J]. Rock and Mineral Analysis, 2022, 41(5): 826-835. doi: 10.15898/j.cnki.11-2131/td.202203240060
Citation: CHU Linlin, WANG Jingyun, JIN Xiaoxia, WANG Bifen, KONG Cuiyu. Determination of Hexavalent Chromium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Alkaline Digestion-Ion Exchange[J]. Rock and Mineral Analysis, 2022, 41(5): 826-835. doi: 10.15898/j.cnki.11-2131/td.202203240060

Determination of Hexavalent Chromium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Alkaline Digestion-Ion Exchange

More Information
  • BACKGROUND

    Hexavalent chromium Cr(Ⅵ) is one of the basic monitoring indicators of soil in construction land. It is of great significance to carry out soil hexavalent chromium monitoring in the prevention and control of environmental pollution. At present, the standard method of hexavalent chromium in soil is flame atomic absorption spectrometry (FAAS). The FAAS method has a high detection limit (0.5mg/kg), and serious matrix effect, and cannot meet the analysis of Cr(Ⅵ) in low-concentration soil samples.

    OBJECTIVES

    To establish a convenient and high sensitivity method for determination of low-concentration hexavalent chromium in soil.

    METHODS

    An ion-exchange-inductively coupled plasma-mass spectrometry (ICP-MS) method was developed to determine the content of hexavalent chromium in soil by extracting hexavalent chromium with alkali solution. The resin content, mixing speed, extraction temperature and extraction time were studied. The measurement results were compared with the flame atomic absorption spectrophotometry (FAAS) method.

    RESULTS

    The results showed that the total dissolved solids (TDS) mass fraction was reduced from 2.4% to 0.17% after the alkaline extraction solution was diluted 10 times and 3.5g of cation exchange resin was added, and the matrix interference was greatly reduced. At the same time, due to the dissolution of hydrogen ions in the ion exchange process, the pH reached a suitable detection range (7.5±0.5). The pretreatment conditions were optimized. When the extraction temperature was 90-95℃, the stirring speed was 300 rpm, and the heating time was 70 min, the extraction effect of Cr(Ⅵ) was the best, and the relative error was -1.7%. The relative standard deviation (RSD) was 3.1%-5.9%, and the average relative error was -3.8% to -1.1%. F test and t test were used to compare the test results of high, medium and low concentration standard substances by ICP-MS and FAAS, and there was no significant difference between the two methods. The method detection limit (MDL) was 0.061 mg/kg.

    CONCLUSIONS

    Since this method adopts dilution, ion exchange, internal standard method, to reduce matrix interference, combined with the high sensitivity and good accuracy of ICP-MS, the method detection limit (MDL) is significantly lower than the detection limit of FAAS method (0.5mg/kg). This method can be used for the determination of low-concentration soil Cr(Ⅵ) samples.

  • 加载中
  • [1] Chen J S, Wei F S, Zheng C J, et al. Background concentrations of elements in soils of China[J]. Water Air and Soil Pollution, 1991, 57/58(1): 699-712. doi: 10.1007/BF00282934

    CrossRef Google Scholar

    [2] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 2019, 38(10): 2219-2238.

    Google Scholar

    Chen Y L, Weng L P, Ma J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238.

    Google Scholar

    [3] Liang J L, Huang X M, Yan J W, et al. A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J]. Science of the Total Environment, 2021, 774: 145762. doi: 10.1016/j.scitotenv.2021.145762

    CrossRef Google Scholar

    [4] Zhang X W, Tong J X, Hu B X, et al. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(Ⅵ)) in soil column[J]. Environmental Science and Pollution Research, 2018, 25: 459-468. doi: 10.1007/s11356-017-0263-0

    CrossRef Google Scholar

    [5] Nagaraj P, Aradhana N, Shivakumar A, et al. Spe-ctrophotometric method for the determination of chromium (Ⅵ) in water samples[J]. Environmental Monitoring and Assessment, 2009, 157: 575-582. doi: 10.1007/s10661-008-0557-2

    CrossRef Google Scholar

    [6] Fikirte Z, Meareg A. Determination of the level of hexavalent, trivalent, and total chromium in the discharged effluent of Bahir Dar tannery using ICP-OES and UV-visible spectrometry[J]. Cogent Chemistry, 2018, 4(1): 1534566. doi: 10.1080/23312009.2018.1534566

    CrossRef Google Scholar

    [7] Miyake Y, Tokumura M, Iwazaki Y, et al. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method[J]. Journal of Chromatography A, 2017, 1502: 24-29. doi: 10.1016/j.chroma.2017.04.046

    CrossRef Google Scholar

    [8] Borai E H, El-Sofany E A, Abdel-Halim A S. Speciation of hexavalent chromium in atmospheric particulate samples by selective extraction and ion chromatographic determination[J]. TrAC Trends in Analytical Chemistry, 2002, 21(11): 741-745. doi: 10.1016/S0165-9936(02)01102-0

    CrossRef Google Scholar

    [9] 林海兰, 谢沙, 文卓琼, 等. 碱消解-火焰原子吸收法测定土壤和固体废物中六价铬[J]. 分析试验室, 2017, 36(2): 198-202.

    Google Scholar

    Lin H L, Xie S, Weng Z Q, et al. Determination of chromium (Ⅵ) in soil and solid waste by alkaline digestion-flame atomic absorption spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(2): 198-202.

    Google Scholar

    [10] Abkenar S D, Hosseini M, Dahaghin Z, et al. Speciation of chromium in water samples with homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry[J]. Bulletin of the Korean Chemical Society, 2010, 31(10): 2813-2818. doi: 10.5012/bkcs.2010.31.10.2813

    CrossRef Google Scholar

    [11] Samira P, Mohammad B, Fatemeh Z, et al. Preconcentration and ultra-trace determination of hexavalent chromium ions using tailor-made polymer nanoparticles coupled with graphite furnace atomic absorption spectrometry: Ultrasonic assisted-dispersive solid-phase extraction[J]. New Journal of Chemistry, 2018, 42 (12): 10357-10365. doi: 10.1039/C8NJ01608A

    CrossRef Google Scholar

    [12] 炼晓璐, 魏洪敏, 甄长伟, 等. 碱消解-火焰原子吸收光谱法测定土壤中六价铬[J]. 中国无机分析化学, 2021, 11(3): 23-27.

    Google Scholar

    Lian X L, Wei H M, Zhen C W, et al. Determination of hexavalent chromium in soil by alkali digestion flame atomic absorption spectrometry[J]. Chinese Jorunal of Inorganic Analytical Chemistry, 2021, 11(3): 23-27.

    Google Scholar

    [13] 李强, 高存富, 曹莹, 等. 固体样品六价铬的检测比对和验证[J]. 环境工程, 2020, 38(6): 47-51.

    Google Scholar

    Li Q, Gao C F, Cao Y, et al. Comparison and verification of hexavalent chromium detection in solid samples[J]. Environmental Engineering, 2020, 38(6): 47-51.

    Google Scholar

    [14] 赵庆令, 李清彩, 谭现锋, 等. 微波碱性体系消解-电感耦合等离子体发射光谱法测定固体废物中的六价铬[J]. 岩矿测试, 2021, 40(1): 103-110.

    Google Scholar

    Zhao Q L, Li Q C, Tan X F, et al. Determination of hexavalent chromium in solid waste by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2021, 40(1): 103-110.

    Google Scholar

    [15] 秦婷, 董宗凤, 吕晓华, 等. 碱消解-电感耦合等离子体发射光谱(ICP-OES)法测定土壤中六价铬[J]. 中国无机分析化学, 2019, 9(6): 10-13.

    Google Scholar

    Qin T, Dong Z F, Lyh X H, et al. Determination of hexavalent chromium in soil by alkaline digestion-inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Chinese Jorunal of Inorganic Analytical Chemistry, 2019, 9(6): 10-13.

    Google Scholar

    [16] 陈波, 胡兰. 电感耦合等离子体质谱法测定土壤样品中六价铬的前处理方法研究[J]. 理化检验(化学分册), 2021, 57(4): 358-361.

    Google Scholar

    Chen B, Hu L. Study on pretreatment method for determination of hexavalent chromium in soil samples by inductively coupled plasma mass spectrometry[J]. Testing and Chemical Analysis (Part B: Chemical Analysis), 2021, 57(4): 358-361.

    Google Scholar

    [17] Spanua D, Monticellia D, Binda G, et al. One-minute highly selective Cr(Ⅵ) determination at ultra-trace levels: An ICP-MS method based on the on-line trapping of Cr(Ⅲ)[J]. Journal of Hazardous Materials, 2021, 412: 125280. doi: 10.1016/j.jhazmat.2021.125280

    CrossRef Google Scholar

    [18] Barałkiewicz D, Pikosz B, Belter M, et al. Speciation analysis of chromium in drinking water samples by ion-pair reversed-phase HPLC-ICP-MS: Validation of the analytical method and evaluation of the uncertainty budget[J]. Accreditation and Quality Assurance, 2018, 18: 391-401.

    Google Scholar

    [19] Christopher T M, Carleton R B, Ruth E W, et al. Modi-fications to EPA method 3060A to improve extraction of Cr(Ⅵ) from chromium ore processing residue-contaminated soils[J]. Environmental Science & Technology, 2017, 51: 11235-11243.

    Google Scholar

    [20] Catalani S, Fostinelli J, Gilberti M E, et al. Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for the determination of chromium species in drinking and tap water[J]. International Journal of Mass Spectrometry, 2015, 387: 31-37.

    Google Scholar

    [21] 刘卫, 林建, 杨一, 等. 碱消解-离子色谱与电感耦合等离子体质谱(IC-ICP-MS)法测定土壤中的六价铬[J]. 中国无机分析化学, 2022, 12(1): 8-12.

    Google Scholar

    Liu W, Lin J, Yang Y, et al. Determination of hexavalent chromium in soil by alkaline digestion-ion chromatography and inductively coupled plasma mass spectrometry (IC-ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(1): 8-12.

    Google Scholar

    [22] Imanaka S, Hayashi H. Behavior of hexavalent chromium in the water supply system by IC-ICP-MS method[J]. Water Supply, 2013, 13(1): 96-103.

    Google Scholar

    [23] Xiao W D, Zhang Y B, Li T Q, et al. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties[J]. Journal of Environmental Quality, 2012, 41(5): 1452-1458.

    Google Scholar

    [24] Mädler S, Sun F, Tat C, et al. Trace-level analysis of hexavalent chromium in lake sediment samples using ion chromatography tandem mass spectrometry[J]. Journal of Environmental Protection, 2016, 7: 422-434.

    Google Scholar

    [25] Huo D W, Kingston H M S. Correction of species transfor-mations in the analysis of Cr(Ⅵ) in solid environmental samples using speciated isotope dilution mass spectrometry[J]. Analytical Chemistry, 2000, 72: 5047-5054.

    Google Scholar

    [26] Eary L E, Davis A. Geochemistry of an acidic chromium sulfate plume[J]. Applied Geochemistry, 2007, 22: 357-369.

    Google Scholar

    [27] Novotnik B, Zuliani T, Šanar J, et al. The determination of Cr(Ⅵ) in corrosion protection coatings by speciated isotope dilution ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27: 1484-1493.

    Google Scholar

    [28] 冷远鹏, 薛晓康, 章明洪. 土壤碱消解检测六价铬的铬还原问题及质控结果分析[J]. 安徽农业科学, 2019, 47(21): 206-208.

    Google Scholar

    Leng Y P, Xue X K, Zhang M H. Determination of chromium reduction of hexavalent chromium by soil alkaline digestion and analysis of quality control results[J]. Journal of Anhui Agricultural Sciences, 2019, 47(21): 206-208.

    Google Scholar

    [29] 刘海明, 武明丽, 成景特, 等. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444-450.

    Google Scholar

    Liu H M, Wu M L, Cheng J T, et al. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444-450.

    Google Scholar

    [30] Vanhaecke F, Vanhoe H, Dams R, et al. The use of internal standards in ICP-MS[J]. Talanta, 1992, 39(7): 737-742.

    Google Scholar

    [31] 史凯, 朱建明, 吴广亮, 等. 地质样品中高精度铬同位素分析纯化技术研究进展[J]. 岩矿测试, 2019, 38(3): 341-353.

    Google Scholar

    Shi K, Zhu J M, Wu G L, et al. A review on the progress of purification techniques for high precision determination of Cr isotopes in geological samples[J]. Rock and Mineral Analysis, 2019, 38(3): 341-353.

    Google Scholar

    [32] Larsen K K, Wielandt D, Schiller M, et al. Chromatographic speciation of Cr(Ⅲ)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis[J]. Journal of Chromatography A: Including Electrophoresis and Other Separation Methods, 2016, 1443: 162-174.

    Google Scholar

    [33] 田晓芳, 高显超, 国静, 等. 过渡金属离子Mn(Ⅱ)和Fe(Ⅲ)对草酸还原Cr(Ⅵ)的催化作用[J]. 南京农业大学学报, 2009, 32(4): 160-164.

    Google Scholar

    Tian X F, Gao X C, Guo J, et al. Catalytic role of Mn(Ⅱ) and Fe(Ⅲ) in the reduction of Cr(Ⅵ) by oxalic acid[J]. Journal of Nanjing Agricultural university, 2009, 32(4): 160-164.

    Google Scholar

    [34] Vitale R J, Mussoline G R, Rinehimer K A, et al. Extrac-tion of sparingly soluble chromate from soils: Evaluation of methods and Eh-pH effects[J]. Environmental Science & Technology, 1997, 31(2): 390-394.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(2772) PDF downloads(140) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint