Citation: | HU Liang, ZHANG Dexian, LOU Wei, HU Ziqi, LIU Jinbo. In situ LA-ICP-MS Determination of Trace Elements in Magnetite from a Gypsum-Salt Bearing Iron Deposit and Geochemical Characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564-574. doi: 10.15898/j.cnki.11-2131/td.202201010001 |
Gypsum-salt formation affects the oxygen fugacity of ore-forming fluid and changes the fluid composition, and then affects the trace element composition, which plays an important indicator role in the formation of iron ore deposits. Therefore, changes in the elemental composition of magnetite can be used to classify the types of deposits and determine their genesis. Gypsum-salt formation is widely developed in "Pamir-type" iron deposits in Xinjiang and Ningwu iron deposits in the middle and lower part of the Yangtze River. However, the controlling mechanism of gypsum-salt formation is still unclear.
In order to investigate the metallogenic process and formation environment of the two types of magnetite, and to discuss the role of gypsum-salt formation in the formation of magnetite deposits.
In situ LA-ICP-MS were employed to determine trace elements in magnetite. RESULTS: LA-ICP-MS results showed that magnetite in the Ningwu area were mainly rich in Ti and V, indicating that it was closely related to magmatism, while the contents of Nb, Ta, Zr, Hf and other high field strength elements (HFSE) in magnetite in the Tashkurgan magnetite deposit in Xinjiang were depleted. Combined with the discrimination diagram of magnetite types, it was mainly divided into two genetic types: magmatic hydrothermal magnetite and hydrothermal metasomatic skarn magnetite related to marine volcanic activity.
The results show that the gypsum-salt formation changes the oxygen fugacity during the formation of magnetite deposits in the Tashkurgan area, and provides an important source of ore-forming material for mineralization during the formation of porphyrite-type iron ore in the Ningwu area.
[1] | 李延河, 段超, 韩丹, 等. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J]. 岩石学报, 2014, 30(5): 1355-1368. Li Y H, Duan C, Han D, et al. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the middle-lower Yangtze River area[J]. Acta Petrologica Sinica, 2014, 30(5): 1355-1368. |
[2] | 蔡本俊. 长江中下游地区内生铁铜矿床与膏盐的关系[J]. 地球化学, 1980, 9(2): 193-199. doi: 10.3321/j.issn:0379-1726.1980.02.008 Cai B J. The relationship of gypsum salt beds with endogenic copper and iron ores in the middle-lower Yangtze Valley[J]. Geochemistry, 1980, 9(2): 193-199. doi: 10.3321/j.issn:0379-1726.1980.02.008 |
[3] | 侯增谦, 杨竹森, 李荫清, 等. 碰撞造山过程中流体向前陆盆地大规模迁移汇聚: 来自长江中下游三叠纪膏盐建造和区域蚀变的证据[J]. 矿床地质, 2004, 23(3): 310-326. doi: 10.3969/j.issn.0258-7106.2004.03.005 Hou Z Q, Yang Z S, Li Y Q, et al. Large-scale migration of fluids towards foreland basins during collisional orogeny: Evidence from Triassic Anhydrock sequences and regional alteration in middle-lower Yangtze area[J]. Mineral Deposits, 2004, 23(3): 310-326. doi: 10.3969/j.issn.0258-7106.2004.03.005 |
[4] | Nadoll P, Mauk J L, Hayes T S, et al. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2012, 107(6): 1275-1292. doi: 10.2113/econgeo.107.6.1275 |
[5] | 叶庆同. 粤东一些铁矿床中磁铁矿的标型特征及其成因意义[J]. 岩矿测试, 1982, 1(1): 44-51. Ye Q T. Typomorphic characteristics and genesis significance of magnetite from some iron ore deposita in eastern Guangdong[J]. Rock and Mineral Analysis, 1982, 1(1): 44-51. |
[6] | Nadoll P, Angerer T, Mauk J L, et al. The chemistry of hydrothermal magnetite: A review[J]. Ore Geology Reviews, 2014, 61: 1-32. doi: 10.1016/j.oregeorev.2013.12.013 |
[7] | Reguir E P, Chakhmouradian A R, Halden N M, et al. Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania[J]. Canadian Mineralogist, 2008, 46(4): 879-900. doi: 10.3749/canmin.46.4.879 |
[8] | 陈意, 胡兆初, 贾丽辉, 等. 微束分析测试技术十年(2011~2020)进展与展望[J]. 矿物岩石地球化学通报, 2021, 40(1): 1-35. Chen Y, Hu Z C, Jia L H, et al. Progress of microbeam analytical technologies in the past decade (2011—2020) and prospect[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 1-35. |
[9] | 李丽君, 薛静. 微波消解-电感耦合等离子体质谱法测定高岭土中10种微量元素[J]. 岩矿测试, 2022, 41(1): 22-31. Li L J, Xue J. Determination of 10 trace elements in kaolin by ICP-MS with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22-31. |
[10] | 万秋, 李延河, 王利民, 等. 北淮阳晓天火山岩盆地片麻状花岗岩成岩年代学及地球化学特征[J]. 岩矿测试, 2020, 39(4): 620-630. Wan Q, Li Y H, Wang L M, et al. The age and geochemical characteristics of neoproterozoic gneissic moyite in the Xiaotian Basin[J]. Rock and Mineral Analysis, 2020, 39(4): 620-630. |
[11] | 郭东旭, 刘琰, 李自静, 等. 应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征[J]. 岩矿测试, 2020, 39(6): 896-907. Guo D X, Liu Y, Li Z J, et al. Determination of trace element compositions of altered minerals in fenitization veins by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 896-907. |
[12] | 贾玉衡, 钱建平. 电子探针-电感耦合等离子体质谱法研究不同种类石榴石的稀土元素配分矿物学特征[J]. 岩矿测试, 2020, 39(6): 886-895. Jia Y H, Qian J P. Study on REE distribution and mineralogical characteristics of different garnets by electron probe and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 886-895. |
[13] | 胡健卫, 庄道泽, 杨万志. 新疆西南部塔什库尔干地区赞坎铁矿综合信息预测模型及其在区域预测中的应用[J]. 地质通报, 2010, 29(10): 1495-1503. doi: 10.3969/j.issn.1671-2552.2010.10.012 Hu J W, Zhuang D Z, Yang W Z. The integrated information predicting model of the Zankan iron deposit, Tashikuergan area, southwestern Xinjiang, China and its application in regional metallogenic prognosis[J]. Geological Bulletin of China, 2010, 29(10): 1495-1503. doi: 10.3969/j.issn.1671-2552.2010.10.012 |
[14] | 燕长海, 陈曹军, 曹新志, 等. 新疆塔什库尔干地区"帕米尔式"铁矿床的发现及其地质意义[J]. 地质通报, 2012, 31(4): 549-557. doi: 10.3969/j.issn.1671-2552.2012.04.008 Yan C H, Chen C J, Cao X Z, et al. The discovery of the "Pamir-type" iron deposits in Taxkorgan area of Xinjiang and its geological significance[J]. Geological Bulletin of China, 2012, 31(4): 549-557. doi: 10.3969/j.issn.1671-2552.2012.04.008 |
[15] | 燕长海, 曹新志, 张旺生, 等. 帕米尔式铁矿床[M]. 北京: 地质出版社, 2012. Yan C H, Cao X Z, Zhang W S, et al. Pamir type iron deposit[M]. Beijing: Geological Publishing House, 2012. |
[16] | 陈曹军. 新疆塔什库尔干地区铁矿床成矿规律及找矿方向研究[D]. 武汉: 中国地质大学(武汉), 2012. Chen C J. Study of metallogenic regularity and prospecting direction of iron deposits in Taxkorgan area, Xinjiang Province[D]. Wuhan: China University of Geosciences (Wuhan), 2012. |
[17] | 胡亮. 新疆塔县老并磁铁矿成矿地质特征及找矿方向[D]. 北京: 中国地质大学(北京), 2014. Hu L. Geological characteristics and prospecting direction of the magnetite deposit in Laobing mining area, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2014. |
[18] | 陈登辉, 伍跃中, 李文明, 等. 西昆仑塔什库尔干地区磁铁矿矿床特征及其成因[J]. 大地构造与成矿学, 2013, 37(4): 671-684. Chen D H, Wu Y Z, Li W M, et al. Geological characteristics and genesis of the iron deposits in the Taxkorgan area, West Kunlun[J]. Geotectonica et Metallogenia, 2013, 37(4): 671-684. |
[19] | 陈石义. 新疆塔什库尔干走克本矿区磁铁矿矿床地质特征[D]. 北京: 中国地质大学(北京), 2013. Chen S Y. Geological characteristics of the magnetite deposit in Taxkorgan mining area, Xinjiang[D]. Beijing: China University of Geosciences (Beijing), 2013. |
[20] | 陈俊魁, 燕长海, 张旺生, 等. 新疆塔什库尔干地区磁铁矿床地质特征与找矿方向[J]. 地质调查与研究, 2011, 34(3): 179-189. doi: 10.3969/j.issn.1672-4135.2011.03.003 Chen J K, Yan C H, Zhang W S, et al. Geological characteristics and prospecting direction of the magnetite iron deposits in the Taxkorgan, Xinjiang[J]. Geological Survey and Research, 2011, 34(3): 179-189. doi: 10.3969/j.issn.1672-4135.2011.03.003 |
[21] | 张德贤, 曹汇, 曾敏, 等. 新疆"帕米尔式"铁矿床成因与成矿背景分析[J]. 岩石学报, 2016, 32(12): 3847-3864. Zhang D X, Cao H, Zeng M, et al. Study on metallogenic genesis and metallogenic settings of Xinjiang "Pamir-type" iron deposit[J]. Acta Petrologica Sinica, 2016, 32(12): 3847-3864. |
[22] | 范裕, 刘一男, 周涛发, 等. 安徽庐枞盆地泥河铁矿床年代学研究及其意义[J]. 岩石学报, 2014, 30(5): 1369-1381. Fan Y, Liu Y N, Zhou T F, et al. Geochronology of the Nihe deposit and in the Lu—Zong Basin and its metallogenic significances[J]. Acta Petrologica Sinica, 2014, 30(5): 1369-1381. |
[23] | Zhu Q, Xie G, Mao J, et al. Mineralogical and sulfur isotopic evidence for the incursion of evaporites in the Jinshandian skarn Fe deposit, Edong District, eastern China[J]. Journal of Asian Earth Sciences, 2015, 113: 1253-1267. doi: 10.1016/j.jseaes.2015.05.022 |
[24] | Griffin W L, Powell W J, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS[M]//Sylvester P. Laser ablation-ICP-MS in the Earth sciences: Current practices and outstanding issues. Mineralogical Association of Canada Short Course, 2008: 308-311. |
[25] | 张德贤, 戴塔根, 胡毅. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J]. 岩矿测试, 2012, 31(1): 120-126. doi: 10.3969/j.issn.0254-5357.2012.01.015 Zhang D X, Dai T G, Hu Y. Analysis of trace elements in magnetite using laser ablation inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 120-126. doi: 10.3969/j.issn.0254-5357.2012.01.015 |
[26] | Nadoll P. Geochemistry of magnetite from hydrothermal ore deposits and host rocks—Case studies from the Proterozoic belt supergroup, Cu-Mo-porphyry+skarn and Climax-Mo deposits in the western United States[M]. New Zealand: The University of Auckland, 2011. |
[27] | Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 2011, 46(4): 319-335. doi: 10.1007/s00126-011-0334-y |
[28] | 张乐骏. 安徽庐枞盆地成岩成矿作用研究[D]. 合肥: 合肥工业大学, 2011. Zhang L J. Polymetallic mineralization and associated magmatic and volcanic activity in the Luzong Basin, Anhui Province, eastern China[D]. Hefei: Hefei University of Technology, 2011. |
[29] | Mallmann G, O'Neill H S C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb)[J]. Journal of Petrology, 2009, 50(9): 1765-1794. doi: 10.1093/petrology/egp053 |
[30] | Zhi Z, Li L, Li S, et al. Magnetite as an indicator of granite fertility and gold mineralization: A case study from the Xiaoqinling Gold Province, North China Craton[J]. Ore Geology Reviews, 2019, 115: 103159. doi: 10.1016/j.oregeorev.2019.103159 |
[31] | 陈述荣, 谢家亨, 许超南, 等. 福建龙岩马坑铁矿床成因的探讨[J]. 地球化学, 1985, 14(4): 350-357. doi: 10.3321/j.issn:0379-1726.1985.04.008 Chen S R, Xie J H, Xu C N, et al. The origin of Makeng iron deposit, Fujian[J]. Geochimica, 1985, 14(4): 350-357. doi: 10.3321/j.issn:0379-1726.1985.04.008 |
[32] | 陈健. 新疆老并磁铁矿床地质地球化学特征及成因分析[D]. 北京: 中国地质大学(北京), 2014. Chen J. Geological geochemical characteristics and genetic analysis of Laobing magnetite deposits, Xinjiang Province[D]. Beijing: China University of Geosciences (Beijing), 2014. |
[33] | 李树勋, 冀树楷, 马志红, 等. 五台山区变质沉积铁矿地质[M]. 吉林: 吉林科学技术出版社, 1986. Li S X, Ji S K, Ma Z H, et al. Geology of metamorphic sedimentary iron ore in Wutaishan area[M]. Jilin: Jilin Science and Technology Press, 1986. |
[34] | 沈其韩, 宋会侠, 杨崇辉, 等. 山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义[J]. 岩石矿物学杂志, 2011, 30(2): 161-171. doi: 10.3969/j.issn.1000-6524.2011.02.001 Shen Q H, Song H X, Yang C H, et al. Petrochemical characteristics and geological significations of banded iron formations in the Wutai Mountain of Shanxi and Qian'an of eastern Hebei[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 161-171. doi: 10.3969/j.issn.1000-6524.2011.02.001 |
[35] | 刘一男. 安徽庐枞盆地罗河—小包庄铁矿床成矿作用研究[D]. 合肥: 合肥工业大学, 2015. Liu Y N. Mineralization of Luohe—Xiaobaozhuang iron deposit in the Lu—Zong Volcanic Basin, Anhui Province[D]. Hefei: Hefei University of Technology, 2015. |
[36] | 范洪源, 李文达, 王文斌. 长江中下游海相三叠系膏盐层与铜(金)、铁矿床[J]. 火山地质与矿产, 1995, 16(2): 32-41. Fan H Y, Li W D, Wang W B. On the relationship between the marine Triassic evaporite horizons and Cu(Au), Fe deposits in the middle-lower Yangtze area[J]. Volcanology & Mineral Resources, 1995, 16(2): 32-41. |
Geological map of iron deposit distribution in Taxkorgan area, Xinjiang (Modified from Zhang, et al[21])
(a) Field photos of iron ores in Tashkurgan area, Xinjiang; (b) Columnar gypsum in iron ore of Tashkurgan area; (c) Microphotograph of iron ores in Tashkurgan area; (d) Iron ore in pyroxene diorite porphyrite in Washan iron deposit; (e) Outcrop photo of Washan iron deposit, Ningwu area; (f) Microphotograph of magnetite and quartz in Washan iron deposit
Box diagrams of trace element content distribution range in magnetite
Magnetite trace element diagrams of "Pamir-type" iron deposit in Xinjiang and porphyrite iron deposit in Ningwu mining area
High field strength element content diagrams of "Pamir-type" iron deposit in Xinjiang and porphyrite iron deposit in Ningwu mining area
(Ca+Al+Mn)-(Ti+V) magnetite genetic classifi-cation diagram (Modified after Dupuis, et al[27])
Zoning map of chemical composition of magmatic and hydrothermal magnetite (Modified after Dare, et al[4])