Citation: | XU Yang, YIN Jingwu, XIAO Keyan, XU Haiming, FANG Jingling, FAN Mingjing. Skarn Mineral Characteristics of the Ahetala Copper Deposit and Its Geological Significance[J]. Rock and Mineral Analysis, 2022, 41(4): 575-585. doi: 10.15898/j.cnki.11-2131/td.202111130173 |
The Ahetala copper deposit is located in Arheqi County, Xinjiang Uygur Autonomous Region. It is located in the South Tianshan orogenic belt, northern margin of Tarim Basin. The deposit belongs to a typical skarn type deposit.
In order to determine the types of skarn minerals, as well as the metallogenic process and environment of the deposit.
Based on detailed field and indoor microscopic observations, electron probe microanalysis (EPMA) was carried out to determine the chemical composition of skarn minerals in the Ahetala copper deposit. RESULTS: The results showed that the skarn minerals were garnet, pyroxene, wollastonite, chlorite and epidote. The EPMA results showed that garnets were grossular and andradite. Pyroxene was diopside (Di77.74-95.46), chlorite was minnesotaite. The Mn/Fe value of diopside was 0.00-0.12, indicating the copper mineralization of this deposit.
The skarn of the Ahetala copper deposit is a typical calcium skarn of metasomatic skarn. According to the mineral paragenetic association and metasomatism, the mineralization stages of the deposit can be divided into early skarn stage, late skarn stage (retrograde alteration), oxide stage and early sulfide stage. From the skarn period to the quartz-sulfide period, the metallogenic environment generally underwent changes from the high temperature, high oxygen fugacity, intermediate-acidic, weak oxidizing-weak reducing environment, to the low temperature, high sulfur fugacity, alkaline reducing environment.
[1] | Burt D M. Skarn deposits historical bibliography through 1970[J]. Economic Geology, 1982, 77(4): 755-763. doi: 10.2113/gsecongeo.77.4.755 |
[2] | Meinert L D, Dipple G M, Nicolescu S. World skarn deposits[J]. Economic Geology (100th Anniversary Volume), 2005: 299-336. |
[3] | Somarin A K. Garnet composition as an indicator of Cu mineralization: Evidence from skarn deposits of NW Iran[J]. Journal of Geochemical Exploration, 2004, 81(1): 47-57. |
[4] | Titley S R. "Pyrometasomatic": An alteration type[J]. Economic Geology, 1973, 68(8): 1326-1329. doi: 10.2113/gsecongeo.68.8.1326 |
[5] | 王伟, 王敏芳, 刘坤, 等. 矽卡岩中石榴子石在示踪热液流体演化和矿化分带中的研究现状及其展望[J]. 岩石矿物学杂志, 2016, 35(1): 147-161. doi: 10.3969/j.issn.1000-6524.2016.01.011 Wang W, Wang M F, Liu K, et al. The current status and prospects of the study of garnet in skarn for hydrothermal fluid evolution tracing and mineralization zoning[J]. Acta Petrologica et Mineralogica, 2016, 35(1): 147-161. doi: 10.3969/j.issn.1000-6524.2016.01.011 |
[6] | Nakano T, Yoshino T, Shimazaki H, et al. Pyroxene composition as an indicator in the classification of skarn deposits[J]. Economic Geology, 1994, 89(7): 1567-1580. doi: 10.2113/gsecongeo.89.7.1567 |
[7] | Zhang S T, Xiao B, Long X P, et al. Chlorite as an exploration indicator for concealed skarn mineralization: Perspective from the Tonglushan Cu-Au-Fe skarn deposit, eastern China[J]. Ore Geology Reviews, 2020, 126: 1-14. |
[8] | 赵一鸣, 丰成友, 李大新. 中国矽卡岩矿床找矿新进展和时空分布规律[J]. 矿床地质, 2017, 36(3): 519-543. Zhao Y M, Feng C Y, Li D X. New progress in prospecting for shark deposits and spatial-teporal distribution of skarn deposits in China[J]. Mineral Deposits, 2017, 36(5): 519-543. |
[9] | 应立娟, 陈毓川, 王登红, 等. 中国铜矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2216-2226. Ying L J, Chen Y C, Wang D H, et al. Metallogenic regularity of copper ore in China[J]. Acta Geologica Sinica, 2014, 88(12): 2216-2226. |
[10] | 徐旸, 尹京武, 安博博, 等. 阿合塔拉铜矿床石榴石特征的研究[J]. 电子显微学报, 2018, 37(4): 339-347. doi: 10.3969/j.issn.1000-6281.2018.04.007 Xu Y, Yin J W, An B B, et al. Study on the characteristics of garnets in Ahetala copper deposit[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(4): 339-347. doi: 10.3969/j.issn.1000-6281.2018.04.007 |
[11] | Morimoto N. Nomenclature of pyroxenes[J]. Mineralogy and Petrology, 1988, 39(1): 55-76. doi: 10.1007/BF01226262 |
[12] | Einaudi M T, Burt D M. Introduction, terminology, classification, and composition of skarn deposits[J]. Economic Geology, 1982, 77(4): 745-754. doi: 10.2113/gsecongeo.77.4.745 |
[13] | 赵一鸣, 林文蔚, 毕承思, 等. 中国矽卡岩矿床[M]. 北京: 地质出版社, 1990: 164-171. Zhao Y M, Lin W W, Bi C S. Skarn deposits in China[M]. Beijing: Geological Publishing House, 1990: 164-171. |
[14] | 吕书君, 杨富全, 柴凤梅, 等. 新疆准噶尔北缘托斯巴斯套铁铜金矿床矽卡岩和磁铁矿矿物学特征及其地质意义[J]. 岩矿测试, 2013, 32(3): 510-520. doi: 10.3969/j.issn.0254-5357.2013.03.027 Lyu S J, Yang F Q, Chai F M, et al. Mineralogical characteristics of skarn in Tuosibasitao iron-copper-gold deposits of the northern margin of Junggar, Xinjiang, and their geological significance[J]. Rock and Mineral Analysis, 2013, 32(3): 510-520. doi: 10.3969/j.issn.0254-5357.2013.03.027 |
[15] | 李壮, 唐菊兴, 王立强, 等. 西藏列廷冈铁多金属矿床矽卡岩矿物学特征及其地质意义[J]. 矿床地质, 2017, 36(6): 1289-1315. Li Z, Tang J X, Wang L Q, et al. Mineralogical characteristics of skarn in Lietinggang iron polymetallic deposit, Tibet and their geological significance[J]. Mineral Deposits, 2017, 36(6): 1289-1315. |
[16] | 林文蔚, 赵一鸣, 蒋崇俊. 矽卡岩矿床中共生单斜辉石-石榴子石特征及其地质意义[J]. 矿床地质, 1990, 9(3): 195-207. Lin W W, Zhao Y M, Jiang C J. Characteristics of paragenetic clinopyro-xene-garnet pairs in skarn deposits and their geological significance[J]. Mineral Deposits, 1990, 9(3): 195-207. |
[17] | 艾永富, 金玲年. 石榴石成分与矿化关系的初步研究[J]. 北京大学学报(自然科学版), 1981(1): 83-90. Ai Y F, Jin L N. The study of the relationship between the mineralization and the garnet in the skarn ore deposites[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1981(1): 83-90. |
[18] | 赵一鸣, 张轶男, 林文蔚. 我国夕卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系[J]. 矿床地质, 1997, 16(4): 318-325. Zhao Y M, Zhang Y N, Lin W W. Characteristics of pyroxenes and pyroxenoids in skarn deposits of China and their relationship with metallization[J]. Mineral Deposits, 1997, 16(4): 318-325. |
[19] | Foster M D. Interpretation of the composition and classi-fication of the chlorites[R]. Washington: United States Government Printing Office, 1962, 414A: 1-33. |
[20] | Inoue A. Formation of clay minerals in hydrothermal environments[M]//Origin and Mineralogy of Clays. 1995: 268-330. |
[21] | Heinrich C A. The chemistry of hydrothermal tin (tungsten) ore deposition[J]. Economic Geology, 1990, 85(3): 457-481. doi: 10.2113/gsecongeo.85.3.457 |
[22] | Muller B, Frischknecht R, Seward T, et al. A fluid inclusion reconnaissance study of the Huanuni tin deposit (Bolivia), using LA-ICP-MS microanalysis[J]. Mineralium Deposita, 2001, 36(7): 680-688. doi: 10.1007/s001260100195 |
[23] | 赵斌, 李统锦, 李昭平. 夕卡岩形成的物理化学条件实验研究[J]. 地球化学, 1983(3): 256-267. doi: 10.3321/j.issn:0379-1726.1983.03.005 Zhao B, Lin T J, Li Z P. Experimental study of physico-chemical conditions of the formation of skarns[J]. Geochemica, 1983(3): 256-267. doi: 10.3321/j.issn:0379-1726.1983.03.005 |
[24] | 梁祥济. 钙铝-钙铁系列石榴子石的特征及其交代机理[J]. 岩石矿物学杂志, 1994, 13(4): 342-352. Liang X J. Garnets of grossular-andraditend series: Their characteristics and metasomatic mechanism[J]. Acta Petrologica et Mineralogica, 1994, 13(4): 342-352. |
[25] | Gaspar M, Knaack C, Lawrence D, et al. REE in skarn systems: A LA-ICP-MS study of garnets from the crown jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033 |
[26] | Jamtveit B, Ragnarsdottir K V, Wood B J. On the origin of zoned grossular-andradite garnets in hydrothermal systems[J]. European Journal of Mineralogy, 1995, 7(6): 1399-1410. doi: 10.1127/ejm/7/6/1399 |
[27] | 聂潇, 尹京武, 陈浦浦, 等. 河南栾川三道庄钼钨矿床石榴石的矿物学特征研究[J]. 电子显微学报, 2014, 32(2): 108-116. doi: 10.3969/j.1000-6281.2014.02.003 Nie X, Yin J W, Chen P P, et al. Skarn mineral characteristics of Sandaozhuang Mo-W deposit and their geological significance[J]. Journal of Chinese Electron Microscopy Society, 2014, 32(2): 108-116. doi: 10.3969/j.1000-6281.2014.02.003 |
[28] | 于淼, 丰成友, 保广英, 等. 青海尕林格铁矿床矽卡岩矿物学及蚀变分带[J]. 矿床地质, 2013, 32(1): 55-76. doi: 10.3969/j.issn.0258-7106.2013.01.004 Yu M, Feng C Y, Bao G Y, et al. Characteristics and zonation of skarn minerals in Galinge iron deposit, Qinghai Province[J]. Mineral Deposits, 2013, 32(1): 55-76. doi: 10.3969/j.issn.0258-7106.2013.01.004 |
[29] | 张志欣, 杨富全, 罗五仓, 等. 新疆阿尔泰乌吐布拉克铁矿床矽卡岩矿物特征及其地质意义[J]. 岩石矿物学杂志, 2011, 30(2): 267-280. doi: 10.3969/j.issn.1000-6524.2011.02.011 Zhang Z X, Yang F Q, Luo W C, et al. Skarn mineral characteristics Wutubulake iron deposit Altay, Xinjiang, and geological significance[J]. Acta Petrologica et Mineralogica, 2011, 30(2): 267-280. doi: 10.3969/j.issn.1000-6524.2011.02.011 |
[30] | Berman R G. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2[J]. Journal of Petrology, 1988(2): 445-522. |
[31] | Perkins E H, Brown T H, Berman R G. PTX-SYSTEM: Three programs for calculation of pressure-temperature-composition phase diagrams[J]. Computers and Geoscience, 1986, 12: 749-755. doi: 10.1016/0098-3004(86)90028-2 |
[32] | 赵一鸣, 林文蔚, 张德全, 等. 交代成矿作用及其找矿意义——几个重要含矿交代建造的研究[M]. 北京: 北京科学技术出版社, 1992: 1-47. Zhao Y M, Lin W W, Zhang D Q, et al. Metasomatism and its prospecting significances—Study on several important ore-bearing metasomatism formations[M]. Beijing: Beijing Science and Technology Publishing Co., Ltd., 1992: 1-47. |
[33] | Hezarkhami A, Williams-Jones A E, Gammons C H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. Mineralium Deposita, 1999, 34(8): 770-783. doi: 10.1007/s001260050237 |
[34] | 于玉帅, 杨竹森, 刘英超, 等. 西藏尼雄矿田日阿铜矿床矽卡岩矿物学特征及地质意义[J]. 矿床地质, 2012, 31(4): 775-790. doi: 10.3969/j.issn.0258-7106.2012.04.009 Yu Y S, Yang Z S, Liu Y C, et al. Mineralogical characteristics of skarn in Ri'a copper deposit of Nixiong orefield, Tibet, and their geological significance[J]. Mineral Deposits, 2012, 31(4): 775-790. doi: 10.3969/j.issn.0258-7106.2012.04.009 |
[35] | Somarin A K. Garnetization as a ground preparation process for copper mineralization: Evidence from the Mazraeh sharn deposit, Iran[J]. International Journal of Earth Sciences, 2010, 99(2): 343-356. doi: 10.1007/s00531-008-0394-0 |
Geological map of Ahetala copper deposit (Modified from Reference [10])
Samples, microscopic and BSE photographs of garnet
Skarn minerals sample, microscopic and BSE photographs
Triangle classification diagram of pyroxene (Modified from Morimoto, et al[11])
Metallogenic periods and mineral formation sequence of Ahetala copper deposit