Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 6
Article Contents

CHEN Xiyun, LYU Kailai, WANG Ping, HUANG Xiangtong, KONG Xinggong. A Review of Research Progress on the Analytical Method of Large-n Detrital Zircon U-Pb Geochronology[J]. Rock and Mineral Analysis, 2022, 41(6): 920-934. doi: 10.15898/j.cnki.11-2131/td.202112260209
Citation: CHEN Xiyun, LYU Kailai, WANG Ping, HUANG Xiangtong, KONG Xinggong. A Review of Research Progress on the Analytical Method of Large-n Detrital Zircon U-Pb Geochronology[J]. Rock and Mineral Analysis, 2022, 41(6): 920-934. doi: 10.15898/j.cnki.11-2131/td.202112260209

A Review of Research Progress on the Analytical Method of Large-n Detrital Zircon U-Pb Geochronology

More Information
  • BACKGROUND

    Detrital zircon U-Pb geochronology is an important tool for identifying sedimentary provenance and determining the maximum depositional age. The numbers of grains for detrital zircon provenance investigations using laser-ablation inductively coupled-plasma mass spectrometer (LA-ICP-MS) typically range from 60 to 120. In this range, age components are commonly not identified from the sample aliquot. In order to improve the reliability of provenance investigation, analysis of more grains (n≥300) or even the large-n aliquot with more than 1000 grains (n > 1000) are required. The emergence of large-n detrital zircon U-Pb geochronology is challenging the methods of data measurement, reduction and evaluation.

    OBJECTIVES

    To summarize the progress of measurement, data reduction and data evaluation of large-n detrital zircon U-Pb geochronology.

    METHODS

    By summarizing the method innovation of domestic and foreign literature.

    RESULTS

    Firstly, each measurement requires rapid acquisition of U and Pb isotope signals, which can be conducted by improving the transmission efficiency of aerosol. The "flat" signal acquisition time can be shortened or transformed to a "peak" signal mode for rapid measurement. Secondly, large-n data require efficient data reduction protocol or powerful software (e.g. iolite) to improve visualization and reduce the variability between inter-laboratory comparisons. For U-Pb data processing flow, several optimized methods are introduced for fractionation correction and propagating uncertainty. In addition, total integrated counts and linear regression correction are introduced to specially process "peak" signals. Thirdly, the new calculation method of U-Pb and Pb-Pb age discordance, such as using Aitchison concordia distance, makes data filtering more reasonable. Based on recent research progress, the future of automation and standardization of large-n detrital zircon U-Pb geochronology is discussed and advice on the selection of instruments and reduction software is provided.

    CONCLUSIONS

    In the future, the development of large-n detrital zircon U-Pb geochronology has great prospects, and will play a greater role in the study of provenance tracing and stratigraphic dating.

  • 加载中
  • [1] Fedo C M, Sircombe K N, Rainbird R H. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry, Geoscience World, 2003, 53(1): 277-303. doi: 10.2113/0530277

    CrossRef Google Scholar

    [2] Shaulis B, Lapen T J, Toms A. Signal linearity of an exten-ded range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(11): Q0AA11.

    Google Scholar

    [3] 徐杰, 姜在兴. 碎屑岩物源研究进展与展望[J]. 古地理学报, 2019, 21(3): 379-396.

    Google Scholar

    Xu J, Jiang Z X. Provenance analysis of clastic rocks: Current research status and prospect[J]. Journal of Palaeogeography, 2019, 21(3): 379-396.

    Google Scholar

    [4] 杨仁超, 李进步, 樊爱萍, 等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报, 2013, 31(1): 99-107. doi: 10.14027/j.cnki.cjxb.2013.01.018

    CrossRef Google Scholar

    Yang R C, Li J B, Fan A P, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107. doi: 10.14027/j.cnki.cjxb.2013.01.018

    CrossRef Google Scholar

    [5] Moecher D P, Samson S D. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis[J]. Earth and Planetary Science Letters, 2006, 247(3): 252-266.

    Google Scholar

    [6] Thomas W A. Detrital-zircon geochronology and sedimentary provenance[J]. Lithosphere, 2011, 3(4): 304-308. doi: 10.1130/RF.L001.1

    CrossRef Google Scholar

    [7] Andersen T, Kristoffersen M, Elburg M A. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study[J]. Gondwana Research, 2016, 34: 129-148. doi: 10.1016/j.gr.2016.03.003

    CrossRef Google Scholar

    [8] Hadlari T, Swindles G T, Galloway J M, et al. 1.8 billion years of detrital zircon recycling calibrates a refractory part of Earth's sedimentary cycle[J]. PLOS ONE, 2015, 10(12): e0144727. doi: 10.1371/journal.pone.0144727

    CrossRef Google Scholar

    [9] Copeland P. On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata[J]. Basin Research, European Association of Geoscientists & Engineers, 2020, 32(6): 1532-1546.

    Google Scholar

    [10] Sharman G R, Malkowski M A. Needles in a haystack: Detrital zircon U-Pb ages and the maximum depositional age of modern global sediment[J]. Earth-Science Reviews, 2020, 203: 103109. doi: 10.1016/j.earscirev.2020.103109

    CrossRef Google Scholar

    [11] Wang P, Zheng H, Wang Y, et al. Sedimentology, geochronology, and provenance of the late Cenozoic "Yangtze Gravel": Implications for lower Yangtze River reorganization and tectonic evolution in southeast China[J]. GSA Bulletin, 2022, 134(1-2): 463-486. doi: 10.1130/B35851.1

    CrossRef Google Scholar

    [12] Zhang J, Zhang B, Zhao H. Timing of amalgamation of the Alxa Block and the North China Block: Constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence[J]. Tectonophysics, 2016, 668-669: 65-81. doi: 10.1016/j.tecto.2015.12.006

    CrossRef Google Scholar

    [13] Huang X, Song J, Yue W, et al. Detrital zircon U-Pb ages in the East China seas: Implications for provenance analysis and sediment budgeting[J]. Minerals, 2020, 10(5): 398. doi: 10.3390/min10050398

    CrossRef Google Scholar

    [14] Iizuka T, Campbell I H, Allen C M, et al. Evolution of the African continental crust as recorded by U-Pb, Lu-Hf and O isotopes in detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta, 2013, 107: 96-120. doi: 10.1016/j.gca.2012.12.028

    CrossRef Google Scholar

    [15] White C, Gehrels G E, Pecha M, et al. U-Pb and Hf isotope analysis of detrital zircons from Paleozoic strata of the southern Alexander terrane (southeast Alaska)[J]. Lithosphere, 2016, 8(1): 83-96. doi: 10.1130/L475.1

    CrossRef Google Scholar

    [16] Vermeesch P. How many grains are needed for a provenance study?[J]. Earth and Planetary Science Letters, 2004, 224(3-4): 441-451. doi: 10.1016/j.epsl.2004.05.037

    CrossRef Google Scholar

    [17] Dodson M H, Compston W, Williams I S, et al. A search for ancient detrital zircons in Zimbabwean sediments[J]. Journal of the Geological Society, 1988, 145(6): 977-983. doi: 10.1144/gsjgs.145.6.0977

    CrossRef Google Scholar

    [18] Andersen T. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 2005, 216(3): 249-270.

    Google Scholar

    [19] Pullen A, Ibáñez-Mejía M, Gehrels G E, et al. What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 971-980. doi: 10.1039/C4JA00024B

    CrossRef Google Scholar

    [20] Saylor J E, Sundell K E. Quantifying comparison of large detrital geochronology data sets[J]. Geosphere, 2016, 12(1): 203-220. doi: 10.1130/GES01237.1

    CrossRef Google Scholar

    [21] Pettit B S, Blum M, Pecha M, et al. Detrital-zircon U-Pb paleodrainage reconstruction and geochronology of the Campanian Blackhawk-Castlegate Succession, Wasatch Plateau and Book Cliffs, Utah, U.S.A. [J]. Journal of Sedimentary Research, 2019, 89(4): 273-292. doi: 10.2110/jsr.2019.18

    CrossRef Google Scholar

    [22] Coutts D S, Matthews W A, Hubbard S M. Assessment of widely used methods to derive depositional ages from detrital zircon populations[J]. Geoscience Frontiers, 2019, 10(4): 1421-1435. doi: 10.1016/j.gsf.2018.11.002

    CrossRef Google Scholar

    [23] Gray A L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry[J]. The Analyst, 1985, 110(5): 551-556. doi: 10.1039/an9851000551

    CrossRef Google Scholar

    [24] Matthews W A, Guest B. A practical approach for collecting large-n detrital zircon U-Pb data sets by quadrupole LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2017, 41(2): 161-180. doi: 10.1111/ggr.12146

    CrossRef Google Scholar

    [25] Chew D, Drost K, Petrus J A. Ultrafast, >50Hz LA-ICP-MS spot analysis applied to U-Pb dating of zircon and other U-bearing minerals[J]. Geostandards and Geoanalytical Research, 2019, 43(1): 39-60. doi: 10.1111/ggr.12257

    CrossRef Google Scholar

    [26] Sundell K E, Gehrels G E, Pecha M E. Rapid U-Pb geochronology by laser ablation multi-collector ICP-MS[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 37-57. doi: 10.1111/ggr.12355

    CrossRef Google Scholar

    [27] van Acker T, van Malderen S J M, van Heerden M, et al. High-resolution laser ablation-inductively coupled plasma-mass spectrometry imaging of cisplatin-induced nephrotoxic side effects[J]. Analytica Chimica Acta, 2016, 945: 23-30. doi: 10.1016/j.aca.2016.10.014

    CrossRef Google Scholar

    [28] van Malderen S J M, Managh A J, Sharp B L, et al. Recent developments in the design of rapid response cells for laser ablation-inductively coupled plasma-mass spectrometry and their impact on bioimaging applications[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 423-439. doi: 10.1039/C5JA00430F

    CrossRef Google Scholar

    [29] Cottle J M, Horstwood M S A, Parrish R R. A new approach to single shot laser ablation analysis and its application to in situ Pb/U geochronology[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(10): 1355-1363. doi: 10.1039/b821899d

    CrossRef Google Scholar

    [30] Cottle J M, Kylander-Clark A R, Vrijmoed J C. U-Th/Pb geochronology of detrital zircon and monazite by single shot laser ablation inductively coupled plasma mass spectrometry (SS-LA-ICPMS)[J]. Chemical Geology, 2012, 332-333: 136-147. doi: 10.1016/j.chemgeo.2012.09.035

    CrossRef Google Scholar

    [31] 冯彦同, 张文, 胡兆初, 等. 激光剥蚀电感耦合等离子体质谱仪新分析模式及其在地球科学中的应用[J]. 中国科学: 地球科学, 2022, 52(1): 98-121.

    Google Scholar

    Feng Y T, Zhang W, Hu Z C, et al. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the Earth sciences[J]. Science China: Earth Sciences, 2022, 65(1): 182-196.

    Google Scholar

    [32] Griffin W L. GLITTER: Data reduction software for laser ablation ICP-MS[M]//Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues. Mineralogical Association of Canada, 2008: 308-311.

    Google Scholar

    [33] Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518. doi: 10.1039/c1ja10172b

    CrossRef Google Scholar

    [34] Andersen T, Elburg M A, Magwaza B N. Sources of bias in detrital zircon geochronology: Discordance, concealed lead loss and common lead correction[J]. Earth-Science Reviews, 2019, 197: 102899. doi: 10.1016/j.earscirev.2019.102899

    CrossRef Google Scholar

    [35] Garcia C, Lindner H, Niemax K. Laser ablation induc-tively coupled plasma mass spectrometry—Current shortcomings, practical suggestions for improving perfor-mance, and experiments to guide future development[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(1): 14-26. doi: 10.1039/B813124B

    CrossRef Google Scholar

    [36] 李献华, 柳小明, 刘勇胜, 等. LA-ICPMS锆石U-Pb定年的准确度: 多实验室对比分析[J]. 中国科学: 地球科学, 2015, 45(9): 1294-1303.

    Google Scholar

    Li X H, Liu X M, Liu Y S, et al. Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison[J]. Science China: Earth Sciences, 2015, 58: 1722-1730.

    Google Scholar

    [37] Paton C, Woodhead J D, Hellstrom J C, et al. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction: Improved laser ablation U-Pb geochronology[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): 1-36.

    Google Scholar

    [38] Heinrich C A, Pettke T, Halter W E, et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3473-3497. doi: 10.1016/S0016-7037(03)00084-X

    CrossRef Google Scholar

    [39] 罗涛. LA-ICP-MS分析过程中元素分馏效应机理及其在副矿物U-Pb年代学中的应用研究[D]. 北京: 中国地质大学(北京), 2018.

    Google Scholar

    Luo T. Further investigation of elemental fractionation in LA-ICP-MS: Implications for non-matrix-matched analysis of the in situ U-Pb dating of accessory minerals[D]. Beijing: China University of Geosciences (Beijing), 2018.

    Google Scholar

    [40] LaHaye N L, Harilal S S, Diwakar P K, et al. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry[J]. Journal of Applied Physics, 2013, 114(2): 023103. doi: 10.1063/1.4812491

    CrossRef Google Scholar

    [41] 王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609-619.

    Google Scholar

    Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609-619.

    Google Scholar

    [42] 侯振辉. 激光剥蚀束斑大小及深度对锆石U-Pb定年准确度的影响[J]. 矿物岩石地球化学通报, 2020, 39(6): 1067-1076.

    Google Scholar

    Hou Z H. Assessing the effects of aperture and depth of hole ablated by laser beam on the accuracy of zircon U-Pb dating[J]. Acta Metallurgica Sinica, 2020, 39(6): 1067-1076.

    Google Scholar

    [43] 周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359.

    Google Scholar

    Zhou L L, Wei J Q, Wang F, et al. Optimization of the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350-359.

    Google Scholar

    [44] Horn I, Rudnick R L, McDonough W F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology[J]. Chemical Geology, 2000, 164(3-4): 281-301. doi: 10.1016/S0009-2541(99)00168-0

    CrossRef Google Scholar

    [45] Košler J, Longerich H P, Tubrett M N. Effect of oxygen on laser-induced elemental fractionation in LA-ICP-MS analysis[J]. Analytical and Bioanalytical Chemistry, 2002, 374(2): 251-254. doi: 10.1007/s00216-002-1481-x

    CrossRef Google Scholar

    [46] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1): 47-69.

    Google Scholar

    [47] Horstwood M S A, Košler J, Gehrels G, et al. Community- derived standards for LA-ICP-MS U-(Th-)Pb geochronology—Uncertainty propagation, age interpretation and data reporting[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 311-332. doi: 10.1111/j.1751-908X.2016.00379.x

    CrossRef Google Scholar

    [48] Jaffey A H, Flynn K F, Glendenin L E, et al. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5): 1889-1906. doi: 10.1103/PhysRevC.4.1889

    CrossRef Google Scholar

    [49] Johnston S, Gehrels G, Valencia V, et al. Small-volume U-Pb zircon geochronology by laser ablation-multicollector-ICP-MS[J]. Chemical Geology, 2009, 259(3): 218-229.

    Google Scholar

    [50] Fietzke J, Liebetrau V, Günther D, et al. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(7): 955-961. doi: 10.1039/b717706b

    CrossRef Google Scholar

    [51] Bouchet S, Bérail S, Amouroux D. Hg compound-specific isotope analysis at ultratrace levels using an on line gas chromatographic preconcentration and separation strategy coupled to multicollector-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2018, 90(13): 7809-7816. doi: 10.1021/acs.analchem.7b04555

    CrossRef Google Scholar

    [52] Wetherill G W. Discordant uranium-lead ages, I[J]. Eos, 1956, 37(3): 320-326.

    Google Scholar

    [53] Tera F, Wasserburg G J. U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks[J]. Earth and Planetary Science Letters, 1972, 14(3): 281-304. doi: 10.1016/0012-821X(72)90128-8

    CrossRef Google Scholar

    [54] 张凌, 王平, 陈玺赟, 等. 碎屑锆石U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.

    Google Scholar

    Zhang L, Wang P, Chen X Y, et al. Review in detrital zircon U-Pb geochronology: Data acquisition, analysis and comparison[J]. Advances in Earth Science, 2020, 35(4): 414-430.

    Google Scholar

    [55] Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589. doi: 10.1016/j.gsf.2015.11.006

    CrossRef Google Scholar

    [56] Gehrels G E, Valencia V A, Ruiz J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03017.

    Google Scholar

    [57] Puetz S J, Ganade C E, Zimmermann U, et al. Statistical analyses of global U-Pb database 2017[J]. Geoscience Frontiers, 2018, 9(1): 121-145. doi: 10.1016/j.gsf.2017.06.001

    CrossRef Google Scholar

    [58] Vermeesch P. Isoplot R: A free and open toolbox for geochronology[J]. Geoscience Frontiers, 2018, 9(5): 1479-1493. doi: 10.1016/j.gsf.2018.04.001

    CrossRef Google Scholar

    [59] Ludwig K R. On the treatment of concordant uranium-lead ages[J]. Geochimica et Cosmochimica Acta, 1998, 62(4): 665-676. doi: 10.1016/S0016-7037(98)00059-3

    CrossRef Google Scholar

    [60] Vermeesch P. On the treatment of discordant detrital zircon U-Pb data[J]. Geochronology, 2021, 3(1): 247-257. doi: 10.5194/gchron-3-247-2021

    CrossRef Google Scholar

    [61] Gehrels G. Detrital zircon U-Pb geochronology: Current methods and new opportunities[M]//Tectonics of Sedimentary Basins: Recent Advances, 2011: 45-62.

    Google Scholar

    [62] Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207-221. doi: 10.1016/0012-821X(75)90088-6

    CrossRef Google Scholar

    [63] Puetz S J, Spencer C J, Ganade C E. Analyses from a validated global U-Pb detrital zircon database: Enhanced methods for filtering discordant U-Pb zircon analyses and optimizing crystallization age estimates[J]. Earth-Science Reviews, 2021, 220: 103745. doi: 10.1016/j.earscirev.2021.103745

    CrossRef Google Scholar

    [64] Bleiner D, Bogaerts A. Computer simulations of sample chambers for laser ablation-inductively coupled plasma spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(2): 155-168. doi: 10.1016/j.sab.2007.02.010

    CrossRef Google Scholar

    [65] Gundlach-Graham A, Günther D. Toward faster and higher resolution LA-ICPMS imaging: On the co-evolution of LA cell design and ICPMS instrumentation[J]. Analytical and Bioanalytical Chemistry, 2016, 408(11): 2687-2695. doi: 10.1007/s00216-015-9251-8

    CrossRef Google Scholar

    [66] Lindner H, Autrique D, Garcia C C, et al. Optimized transport setup for high repetition rate pulse-separated analysis in laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, American Chemical Society, 2009, 81(11): 4241-4248.

    Google Scholar

    [67] Halicz L, Günther D. Quantitative analysis of silicates using LA-ICP-MS with liquid calibration[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(12): 1539-1545. doi: 10.1039/B410132D

    CrossRef Google Scholar

    [68] Gurevich E L, Hergenröder R. A simple laser ICP-MS ablation cell with wash-out time less than 100ms[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(9): 1043-1050. doi: 10.1039/b704700b

    CrossRef Google Scholar

    [69] Chew D, Drost K, Marsh J H, et al. LA-ICP-MS imaging in the geosciences and its applications to geochronology[J]. Chemical Geology, 2021, 559: 119917. doi: 10.1016/j.chemgeo.2020.119917

    CrossRef Google Scholar

    [70] 李凤春, 侯明兰, 栾日坚, 等. 电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用[J]. 岩矿测试, 2016, 35(1): 17-23.

    Google Scholar

    Li F C, Hou M L, Luan R J, et al. Optimization of analytical conditions for LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 2016, 35(1): 17-23.

    Google Scholar

    [71] Jakubowski N, Prohaska T, Vanhaecke F, et al. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry Part Ⅱ. Applications[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(4): 727-757. doi: 10.1039/c0ja00007h

    CrossRef Google Scholar

    [72] Hendriks L, Gundlach-Graham A, Hattendorf B, et al. Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(3): 548-561. doi: 10.1039/C6JA00400H

    CrossRef Google Scholar

    [73] Borovinskaya O, Gschwind S, Hattendorf B, et al. Simul-taneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS[J]. Analytical Chemistry, 2014, 86(16): 8142-8148. doi: 10.1021/ac501150c

    CrossRef Google Scholar

    [74] Tanner M, Günther D. In torch laser ablation sampling for inductively coupled plasma time of flight mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(9): 941-947. doi: 10.1039/B602915A

    CrossRef Google Scholar

    [75] Guilhaus M. Essential elements of time-of-flight mass spectrometry in combination with the inductively coupled plasma ion source[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(10): 1511-1525. doi: 10.1016/S0584-8547(00)00261-5

    CrossRef Google Scholar

    [76] Thompson J M, Danyushevsky L V, Borovinskaya O, et al. Time-of-flight ICP-MS laser ablation zircon geochronology: Assessment and comparison against quadrupole ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2282-2297. doi: 10.1039/D0JA00252F

    CrossRef Google Scholar

    [77] Košler J, Fonneland H, Sylvester P, et al. U-Pb dating of detrital zircons for sediment provenance studies—A comparison of laser ablation ICPMS and SIMS techniques[J]. Chemical Geology, 2002, 182(2): 605-618.

    Google Scholar

    [78] Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [79] McLean N M, Bowring J F, Gehrels G. Algorithms and software for U-Pb geochronology by LA-ICPMS: U-Pb LA-ICPMS algorithms and software[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(7): 2480-2496. doi: 10.1002/2015GC006097

    CrossRef Google Scholar

    [80] Bowring J F, McLean N M, Bowring S A. Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb redux[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q0AA19.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(4202) PDF downloads(121) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint