Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 6
Article Contents

CHEN Weikun, Tenger, ZHANG Chunhe, FANG Ronghui, ZHANG Cong, BAI Minggang, WANG Zi, XIA Xianghua. A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906-919. doi: 10.15898/j.cnki.11-2131/td.202111170175
Citation: CHEN Weikun, Tenger, ZHANG Chunhe, FANG Ronghui, ZHANG Cong, BAI Minggang, WANG Zi, XIA Xianghua. A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906-919. doi: 10.15898/j.cnki.11-2131/td.202111170175

A Review of Research Progress on Characterization Technology of Nano Organic Pore Structure in Shale

More Information
  • BACKGROUND

    The development and utilization of shale gas has become an important way to ensure national energy security and achieve global carbon neutrality goals. Shale gas reservoir is the direct target layer of shale gas exploration and development, because its shale nanopore throat system, dominated by organic pores, has the characteristics of integrated source storage, low porosity, low permeability and non-darcy flow. The evaluation of shale reservoir evaluation needs to break through the bondage of traditional inorganic pore evaluation ideas and the bottleneck of nanoscale characterization technology, and adopt higher precision and resolution experimental technology to characterize nanopores and depict organic pores.

    OBJECTIVES

    To understand the research progress on characterization technology of nano organic pore structure in shale and explore the evolution mechanism of organic pore formation, its experimental technical bottlenecks and possible solutions.

    METHODS

    According to the experimental types and principles, shale nanopore analysis can be divided into two types: physical experiment technology and imaging analysis technology. The former mainly carries out quantitative physical experiment analysis of rock physical properties, while the latter carries out microscopic in-situ observation and image analysis of pore structure.

    RESULTS

    Since organic pores were first discovered in the Barnett shale in North America in 2009, significant progress has been made in studying shale characterization techniques and developmental features. (1)Multi-scale and multi-type nanopore characterization techniques were established. Among them, the quantitative microstructure characterization technologies are dominated by mercury-adsorption joint measurement method and pulse attenuation method. Quantitative parameters of shale physical properties and full aperture distribution ranging from 0.35nm to 10000nm and permeability of < 1μD can be accurately obtained. High-resolution microscopy scanning based on field-emission SEM and microscopy-CT forms a multi-scale structure reconstruction technology of nanopore, and thus 2D-3D image information is available. (2)The formation and evolution of organic pores are controlled by organic matter type, rock evolution and other factors. It is necessary to reveal the internal connection between the influencing factors and the physical evolution law of organic matter molecular structure, which is the key to identify the heterogeneity of shale reservoirs. Formation and keeping of organic pores is in the process of decomposition and condensation reaction competition space effect. (3)Previous studies established a series of kerogen and asphalt structure model for the molecular organic pores evolution mechanism, providing the theoretical basis for research on the genetic mechanism and evolution law of organic pores at the molecular level. Transmission electron microscope and atomic force microscope are used to observe molecular space arrangement and microstructure internal form in stereo. These techniques enable the understanding of the mechanisms of organic pore formation and preservation at the nanoscale.

    CONCLUSIONS

    In-situ structure imaging and component scanning technology, reservoir description, composition analysis and digital core integration, are developed to the structure and composition, pore permeability and brittle integration dynamic evaluation. A leap from microstructural analysis to macroscopic big data prediction is realized, meeting the needs of efficient exploration and development of shale gas geology and engineering integration.

  • 加载中
  • [1] 金之钧. 页岩革命及其意义[J]. 经济导刊, 2019(10): 49-52.

    Google Scholar

    Jin Z J. Shale revolution and its significance[J]. Economic Herald, 2019(10): 49-52.

    Google Scholar

    [2] Jarvie D M. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068

    CrossRef Google Scholar

    [3] 马永生, 蔡勋育, 赵培荣, 等. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.

    Google Scholar

    Ma Y S, Cai X Y, Zhao P R, et al. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.

    Google Scholar

    [4] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 31(1): 1-14.

    Google Scholar

    Zou C N, Zhao Q, Cong L Z, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.

    Google Scholar

    [5] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79: 848-861. doi: 10.2110/jsr.2009.092

    CrossRef Google Scholar

    [6] Ambrose R J, Hartman R C, Diaz-Campos M, et al. New pore-scale considerations for shale gas in place calculations[C]//Proceedings of Unconventional Gas Conference. Pittsburgh, Pennsylvania: Society of Petroleum Engineers, 2010.

    Google Scholar

    [7] Milner M, Mclin R, Petriello J, et al. Imaging texture and porosity in mudstones and shales: Comparison of secondary and ionmilled backscatter SEM methods[C]//Proceedings of Canadian Unconventional Resources & Intemational Petroleum Conference. Alberta: Society of Petroleum Engineers, 2010.

    Google Scholar

    [8] 徐旭辉, 申宝剑, 李志明, 等. 页岩气实验地质评价技术研究现状及展望[J]. 油气藏评价与开发, 2020, 10(1): 1-8.

    Google Scholar

    Xu X H, Shen B J, Li Z M, et al. Status and prospect of experimental technologies of geological evaluation for shale gas[J]. Reservoir Evaluation and Development, 2020, 10(1): 1-8.

    Google Scholar

    [9] 王红岩, 周尚文, 刘德勋, 等. 页岩气地质评价关键实验技术的进展与展望[J]. 天然气工业, 2020, 40(6): 1-17.

    Google Scholar

    Wang H Y, Zhou S W, Liu D X, et al. Progress and prospect of key experimental technologies for shale gas geological evaluation[J]. Natural Gas Industry, 2020, 40 (6): 1-17.

    Google Scholar

    [10] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061

    CrossRef Google Scholar

    [11] Zhang W T, Hu W X, Borjigin T, et al. Pore charac-teristics of different organic matter in black shale: A case study of the Wufeng—Longmaxi Formation in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43. doi: 10.1016/j.marpetgeo.2019.08.010

    CrossRef Google Scholar

    [12] 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855.

    Google Scholar

    Ma X H, Xie J, Yong R, et al. Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(5): 841-855.

    Google Scholar

    [13] Curis M E, Cardott B J, Sondergeld C H, et al. Devel-opment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004

    CrossRef Google Scholar

    [14] 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699.

    Google Scholar

    Tenger, Lu L F, Yu L J, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48 (4): 687-699.

    Google Scholar

    [15] 姜振学, 李鑫, 王幸蒙, 等. 中国南方典型页岩孔隙特征差异及其控制因素[J]. 石油与天然气地质, 2021, 42(1): 41-53.

    Google Scholar

    Jiang Z X, Li X, Wang X M, et al. Characteristic differences and controlling factors of pores in typical South China shale[J]. Oil & Gas Geology, 2021, 42(1): 41-53.

    Google Scholar

    [16] 魏志红. 富有机质页岩有机质孔发育差异性探讨——以四川盆地五峰组—龙马溪组笔石页岩为例[J]. 成都理工大学学报(自然科学版), 2015, 42(3): 361-365. doi: 10.3969/j.issn.1671-9727.2015.03.13

    CrossRef Google Scholar

    Wei Z H. Difference of organic pores in organic matter: A cace from graptolite shales of Wufeng—Longmaxi Formation in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(3): 361-365. doi: 10.3969/j.issn.1671-9727.2015.03.13

    CrossRef Google Scholar

    [17] 宋岩, 高凤琳, 唐相路, 等. 海相与陆相页岩储层孔隙结构差异的影响因素[J]. 石油学报, 2020, 41(21): 1501-1512.

    Google Scholar

    Song Y, Gao F L, Tang X L, et al. Influencing factors of pore structure differences between marine and terrestrial shale reservoirs[J]. Acat Petrolei Sinica, 2020, 41(21): 1501-1512.

    Google Scholar

    [18] 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(4): 379-391.

    Google Scholar

    He Z L, Nie H K, Hu D F, et al. Geological problems hindering effective development of deep shale gas: Taking Upper Ordovician Wufeng—Lower Silurian Longmaxi Formations in Sichuan Basin and its periphery as an example[J]. Acta Petrolei Sinica, 2020, 41(4): 379-391.

    Google Scholar

    [19] 田华, 柳少波, 洪峰, 等. 关于页岩孔隙度与渗透率测定国家标准(GB/T 34533—2017)的思考与建议[J]. 中国标准化, 2018, 12(增刊): 35-39.

    Google Scholar

    Tian H, Liu S B, Hong F, et al. Consideration and suggestion on shale porosity and permeability measurement standard (GB/T 34533—2017)[J]. China Standardization, 2018, 12(Supplement): 35-39.

    Google Scholar

    [20] 陈思宇, 田华, 柳少波, 等. 致密储层样品体积测量对孔隙度误差的影响[J]. 石油实验地质, 2016, 38(6): 850-856.

    Google Scholar

    Chen S Y, Tian H, Liu S B, et al. Influence of bulk volume measurement on porosity error in tight reservoir core plug analysis[J]. Petroleum Geology & Experiment, 2016, 38(6): 850-856.

    Google Scholar

    [21] Sun W J B, Zuo Y J, Wu Z H, et al. Fractal analysis of pores and the pore structure of the Lower Cambrian Niutitang shale in northern Guizhou Province: Investigations using NMR, SEM and image analyses[J]. Marine and Petroleum Geology, 2019, 99: 416-428. doi: 10.1016/j.marpetgeo.2018.10.042

    CrossRef Google Scholar

    [22] 孙中良, 李志明, 申宝剑, 等. 核磁共振技术在页岩油气储层评价中的应用[J/OL]. 石油实验地质, 2022(5): 930-940.

    Google Scholar

    Sun Z L, Li Z M, Shen B J, et al. NMR technology in reservoir evaluation for shale oil and shale gas[J/OL]. Petroleum Geology & Experiment, 2022(5): 930-940.

    Google Scholar

    [23] Jones S C. A technique for faster pulse-decay permea-bility measurements in tight rocks[J]. SPE Formation Evaluation, 1997, 12(1): 19-25. doi: 10.2118/28450-PA

    CrossRef Google Scholar

    [24] Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. doi: 10.1306/04011312194

    CrossRef Google Scholar

    [25] 俞凌杰, 范明. 中国石化无锡石油地质研究所实验地质技术之脉冲衰减法超低渗透率测试技术[J]. 石油实验地质, 2015, 37(3): 264.

    Google Scholar

    Yu L J, Fan M. Pulse attenuation method for ultra low permeability testing technology of experimental geology technology of Sinopec Wuxi Petroleum Geology Institute[J]. Petroleum Geology & Experiment, 2015, 37(3): 264.

    Google Scholar

    [26] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78.

    Google Scholar

    Tenger, Shen B J, Yu L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng—Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78.

    Google Scholar

    [27] 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153.

    Google Scholar

    Wei X F, Li Y P, Wei Z H, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153.

    Google Scholar

    [28] 田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427.

    Google Scholar

    Tian H, Zhang S C, Liu S B, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption method[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427.

    Google Scholar

    [29] 马真乾, 王英滨, 于炳松. 渝东南地区下寒武统牛蹄塘组页岩孔径分布测试方法研究[J]. 岩矿测试, 2018, 37(3): 244-255.

    Google Scholar

    Ma Z Q, Wang Y B, Yu B S. Study on analytical method for pore size distribution of the Lower Cambrian Niutitang Formation shale in southeastern Chongqing[J]. Rock and Mineral Analysis, 2018, 37(3): 244-255.

    Google Scholar

    [30] 马勇, 钟宁宁, 程礼军, 等. 渝东南两套富有机质页岩的孔隙结构特征——来自FIB-SEM的新启示[J]. 石油实验地质, 2015, 37 (1): 109-116.

    Google Scholar

    Ma Y, Zhong N N, Cheng L J, et al. Pore structure of two organic-rich shales in southeastern Chongqing area: Insight from focused ion beam scanning electron microscope (FIB-SEM)[J]. Petroleum Geology & Experiment, 2015, 37(1): 109-116.

    Google Scholar

    [31] 白名岗, 夏响华, 张聪, 等. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J]. 岩矿测试, 2018, 37(3): 225-234.

    Google Scholar

    Bai M G, Xia X H, Zhang C, et al. Study on shale organic porosity in the Longmaxi Formation, AnYe-1 well using field emission-scanning electron microscopy and PerGeos system[J]. Rock and Mineral Analysis, 2018, 37(3): 225-234.

    Google Scholar

    [32] 戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究[J]. 岩矿测试, 2019, 38(3): 260-269.

    Google Scholar

    Qi M H, Li J J, Cao Q. The pore structure characterization of shale based on scanning electron microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269.

    Google Scholar

    [33] Wang P F, Jiang Z X, Chen L, et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze Platform, South China: Evidence from focused ion beam-He ion microscopy, nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology, 2016, 77: 1323-1337.

    Google Scholar

    [34] 王羽, 汪丽华, 王建强, 等. 基于聚焦离子束-扫描电镜方法研究页岩有机孔三维结构[J]. 岩矿测试, 2018, 37(3): 235-243.

    Google Scholar

    Wang Y, Wang L H, Wang J Q, et al. Three-dimension characterization of organic matter pore structures of shale using focused ion beam-scanning electron microscope[J]. Rock and Mineral Analysis, 2018, 37(3): 235-243.

    Google Scholar

    [35] 苟启洋, 徐尚, 郝芳, 等. 纳米CT页岩孔隙结构表征方法研究——以JY-1井为例[J]. 石油学报, 2018, 39(11): 1253-1261.

    Google Scholar

    Gou Q Y, Xu S, Hao F, et al. CharacterIzation method of shale pore structure based on nano-CT: A case study of Well JY-1[J]. Acta Petrolei Sinica, 2018, 39 (11): 1253-1261.

    Google Scholar

    [36] 李磊, 郝景宇, 肖继林, 等. 微米级X射线断层成像技术对四川元坝地区页岩微裂缝的定量表征[J]. 岩矿测试, 2020, 39(3): 362-372.

    Google Scholar

    Li L, Hao J Y, Xiao J L, et al. Quantitative characterization of chale micro-fracture in the Yuanba area of the Sichuan Basin by micro X-ray tomography[J]. Rock and Mineral Analysis, 2020, 39(3): 362-372.

    Google Scholar

    [37] 王羽, 汪丽华, 王建强, 等. 利用微米X射线显微镜研究陆相延长组页岩孔隙结构特征[J]. 岩矿测试, 2020, 39(4): 566-577.

    Google Scholar

    Wang Y, Wang L H, Wang J Q, et al. Investigation on pore structures of Yanchang Formation shale using micro X-ray microscopy[J]. Rock and Mineral Analysis, 2020, 39(4): 566-577.

    Google Scholar

    [38] 朱如凯, 金旭, 王晓琦, 等. 复杂储层多尺度数字岩石评价[J]. 地球科学, 2018, 43(5): 1773-1782.

    Google Scholar

    Zhu R K, Jin X, Wang X Q, et al. Multi-scale digital rock evaluation on complex reservoir[J]. Earth Science, 2018, 43(5): 1773-1782.

    Google Scholar

    [39] 宋土顺, 李轩, 张颖, 等. QEMSCAN矿物定量分析技术在成岩作用研究中的运用: 以扶余油层致密砂岩为例[J]. 地质科技情报, 2016, 35(3): 193-198.

    Google Scholar

    Song T S, Li X, Zhang Y, et al. QEMSCAN mineral quantitative anlysis of tight sandstone diagenesis in Fuyu oil layer, Daqing placanticline[J]. Geological Science and Technology Information, 2016, 35(3): 193-198.

    Google Scholar

    [40] 马晓潇, 黎茂稳, 庞雄奇, 等. 手持式X荧光光谱仪在济阳坳陷古近系陆相页岩岩心分析中的应用[J]. 石油实验地质, 2016, 38(2): 278-285.

    Google Scholar

    Ma X X, Li M W, Pang X Q, et al. Application of hand-held X-ray fluorescence spectrometry in the core analysis of Paleogene lacustrine shales in the Jiyang Depression[J]. Petroleum Geology & Experiment, 2016, 38(2): 278-285.

    Google Scholar

    [41] 陈康, 纪广轩, 朱有峰, 等. 基于高光谱岩心扫描系统研究城门山铁路坎铜矿床的蚀变特征[J]. 岩矿测试, 2020, 39(6): 944-953.

    Google Scholar

    Chen K, Ji G X, Zhu Y F, et al. Study on alteration characteristics of the Chengmenshan Tielukan copper deposit by a hyperspectral core scanning system[J]. Rock and Mineral Analysis, 2020, 39(6): 944-953.

    Google Scholar

    [42] Lu X C, Li F C, Watson A T. Adsorption measurements in Devonian shales[J]. Fuel, 1995, 74(4): 599-603.

    Google Scholar

    [43] Hickey J J, Hen K B. Lithofacies summary of the Mississippian Barnett shale, mitchell 2 SIMS well T P, Wise Country, Texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.

    Google Scholar

    [44] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864.

    Google Scholar

    Zou C N, Zhu R K, Bai B, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27 (6): 1857-1864.

    Google Scholar

    [45] 琚宜文, 黄骋, 孙岩, 等. 纳米地球科学: 内涵与意义[J]. 地球科学, 2018, 43(5): 1367-1383.

    Google Scholar

    Ju Y W, Huang P, Sun Y, et al. Nanogeoscience: Connotation and significance[J]. Earth Science, 2018, 43(5): 1367-1383.

    Google Scholar

    [46] 邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-26.

    Google Scholar

    Zou C N, Yang Z, Tao S Z, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26.

    Google Scholar

    [47] 卢双舫, 张亚念, 李俊乾, 等. 纳米技术在非常规油气勘探开发中的应用[J]. 矿物岩石地球化学通报, 2016, 35(1): 28-36.

    Google Scholar

    Lu S F, Zhang Y N, Li J Q, et al. Nanotechnology and its application in the exploration and development of unconventional oil and gas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1): 28-36.

    Google Scholar

    [48] Brydson R, Brown A, Benning L G, et al. Analytical transmission electron microscopy[J]//Henderson G S, Neuville D R, Downs R T. Spectroscopic methods in mineralogy and materials sciences[J]. Reviews in Mineralogy & Geochemistry, 2014, 78: 219-269.

    Google Scholar

    [49] 李金华, 潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学: 地球科学, 2015, 45(9): 1359-1382.

    Google Scholar

    Li J H, Pan Y X. Applications of transmission electron microscopy in the Earth sciences[J]. Scientia Sinica Terrae, 2015, 45(9): 1359-1382.

    Google Scholar

    [50] 傅家谟, 秦匡宗. 干酪根地球化学[M]. 广州: 广州科技出版社, 1995: 375-441.

    Google Scholar

    Fu J M, Qin K Z. Kerogen geochemistry[M]. Guangzhou: Guangzhou Science and Technology Press, 1995: 375-441.

    Google Scholar

    [51] 王飞宇, 傅家谟, 刘德汉, 等. 煤和烃源岩镜质体中超微类脂体检出及意义[J]. 科学通报, 1993, 38(2): 151-154.

    Google Scholar

    Wang F Y, Fu J M, Liu D H, et al. Detection and significance of ultramicro liposomes in vitrinite of coal and source rock[J]. Chinese Science Bulletin, 1993, 38(2): 151-154.

    Google Scholar

    [52] Sharma A, Kyotani T, Tomita A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy & Fuels, 2000, 14(6): 1219-1225.

    Google Scholar

    [53] Burlingame A L, Haug P A, Schnoes H K, et al. Fatty acids derived from the Green River Formation oil shale by extractions and oxidations—A review[C]//Schenck P A, Havenaar I. Advances in organic geochemistry. Oxford: Pergamon Press, 1969: 85-129.

    Google Scholar

    [54] Behar F, Vandenbroucke M. Chemical modeling of kerogens[J]. Organic Geochemistry, 1987, 11(1): 15-24.

    Google Scholar

    [55] Largeau C, Derenne S, Casadevall E, et al. Occurrence and origin of ultralaminar structures in amorphous kerogens of various source rocks and oil shales[J]. Organic Geochemistry, 1990, 16(4/6): 889-895.

    Google Scholar

    [56] 于冰, 曹庆英, 张井, 等. 干酪根类型划分及评价的TEM新技术[J]. 电子显微学报, 1993(2): 184.

    Google Scholar

    Yu B, Cao Q Y, Zhang J, et al. New TEM technology for classification and evaluation of kerogen types[J]. Journal of Chinese Electron Microscopy Society, 1993(2): 184.

    Google Scholar

    [57] Benitez J J, Matas A J, Heredia A. Molecular characteri-zation of the plant biopolyester cutin by AFM and spectroscopic techniques[J]. Journal of Structural Biology, 2004, 147: 179-184.

    Google Scholar

    [58] 姚素平, 焦堃, 张科, 等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报, 2011, 56(22): 1820-1827.

    Google Scholar

    Yao S P, Jiao K, Zhang K, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(22): 1820-1827.

    Google Scholar

    [59] 杨起, 潘治贵, 汤达祯, 等. 煤结构的STM和AFM研究[J]. 科学通报, 1994, 39(7): 633-635.

    Google Scholar

    Yang Q, Pan Z G, Tang D Z, et al. STM and AFM study on coal structure[J]. Chinese Science Bulletin, 1994, 39(7): 633-635.

    Google Scholar

    [60] Loeber L, Sutton O, Morel J, et al. New direct obser-vations of asphalts and asphalt binder by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39.

    Google Scholar

    [61] Golubev Y A, Kovaleva O V, Yushkin N P. Observations and morphological analysis of supermolecular structure of natural bitumens by atomic force microscopy[J]. Fuel, 2008, 87(1): 32-38.

    Google Scholar

    [62] Hirono T, Lin W, Nakashima S. Pore space visualization of rocks using an atomic force microscope[J]. International Journal of Rock Mechanics & Mining Sciences, 2006, 43: 317-320.

    Google Scholar

    [63] 王坤阳, 杜谷. 利用原子力显微镜与能谱-扫描电镜研究页岩孔隙结构特征[J]. 岩矿测试, 2020, 39(6): 839-846.

    Google Scholar

    Wang K Y, Du G. Study on the pore structure charact-eristics of shale by atomic force microscope and energy spectrum-scanning electron microscope[J]. Rock and Mineral Analysis, 2020, 39(6): 839-846.

    Google Scholar

    [64] Wirth R. Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chemical Geology, 2009, 261: 217-229.

    Google Scholar

    [65] Bernard S, Horsfield B, Schulz H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia shale[J]. Marine and Petroleum Geology, 2012, 31: 70-89.

    Google Scholar

    [66] Sisk C, Diaz E, Walls J, et al. 3D visualization and classification of pore structure and pore filling in gas shale[C]//SPE Annual Technical Conference and Exhibition Florence. Italy: Society of Petroleum Engineers, 2010: 1-4.

    Google Scholar

    [67] 王玉满, 李新景, 陈波海, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018, 45(3): 385-395.

    Google Scholar

    Wang Y M, Li X J, Chen B H, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395.

    Google Scholar

    [68] 高玉巧, 蔡潇, 何希鹏, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J]. 吉林大学学报(地球科学版), 2020, 50(2): 662-674.

    Google Scholar

    Gao Y Q, Cai X, He X P, et al. Relationship between shale pressure system and organic pore development in Wufeng—Longmaxi Formation of basin margin transition zone in southeast Chongqing[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 662-674.

    Google Scholar

    [69] 卢龙飞, 刘伟新, 俞凌杰, 等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质, 2020, 42(3): 363-370.

    Google Scholar

    Lu L F, Liu W X, Yu L J, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370.

    Google Scholar

    [70] 朱洪建, 琚宜文, 孙岩, 等. 构造变形作用下页岩孔裂隙结构演化特征及其模式——以四川盆地及其周缘下古生界海相页岩为例[J]. 石油与天然气地质. 2021, 42(1): 186-200.

    Google Scholar

    Zhu H J, Ju Y W, Sun Y, et al. Evolution characteristics and models of shale pores and fractures under tectonic deformation: A case study of the Lower Paleozoic marine shale in the Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2021, 42(1): 186-200.

    Google Scholar

    [71] 郭旭升, 胡东风, 黄仁春, 等. 四川盆地深层-超深层天然气勘探进展与展望[J]. 天然气工业, 2020, 40(5): 1-14.

    Google Scholar

    Guo X S, Hu D F, Huang R C, et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin: Progress and prospect[J]. Natural Gas Industry, 2020, 40(5): 1-14.

    Google Scholar

    [72] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组—龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201.

    Google Scholar

    Guo X S, Li Y P, Tenger, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Wufeng—Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201.

    Google Scholar

    [73] 卢龙飞, 刘伟新, 魏志红, 等. 四川盆地志留系页岩成岩特征及其对孔隙发育与保存的控制[J]. 沉积学报, 2022, 40(1): 73-87.

    Google Scholar

    Lu L F, Liu W X, Wei Z H, et al. Diagenesis of the Silurian shale, Sichuan Basin: Focus on pore development and preservation[J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87.

    Google Scholar

    [74] Tissot B P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration[J]. AAPG Bulletin, 1984, 68(5): 545-563.

    Google Scholar

    [75] Faulon J L, Vandenbroucke M, Drappier J M, et al. 3D chemical model for geological macromolecules[C]//Durand B, Behar F. Advances in Organic Geochemistry. Oxford: Pergamon Press, 1990: 981-993.

    Google Scholar

    [76] Vandenbroucke M. Kerogen: From types to models of chem-ical structure[J]. Oil & Gas Science and Technology-Revue de L' Institut Francais Du Petrole, 2003, 58(2): 243-269.

    Google Scholar

    [77] 腾格尔, 陶成, 胡广, 等. 排烃效率对页岩气形成与富集的影响[J]. 石油实验地质, 2020, 42(3): 325-334.

    Google Scholar

    Tenger, Tao C, Hu G, et al. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment[J]. Petroleum Geology & Experiment, 2020, 42(3): 325-334.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(3594) PDF downloads(182) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint