Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 6
Article Contents

WANG Yiru, WU Xiaotan, HE Jing, LI Chongying. A Review of Research Progress on Fractionation Characteristics and Acquisition Methods of Rare Earth Elements in Carbonate Minerals[J]. Rock and Mineral Analysis, 2022, 41(6): 935-946. doi: 10.15898/j.cnki.11-2131/td.202204180081
Citation: WANG Yiru, WU Xiaotan, HE Jing, LI Chongying. A Review of Research Progress on Fractionation Characteristics and Acquisition Methods of Rare Earth Elements in Carbonate Minerals[J]. Rock and Mineral Analysis, 2022, 41(6): 935-946. doi: 10.15898/j.cnki.11-2131/td.202204180081

A Review of Research Progress on Fractionation Characteristics and Acquisition Methods of Rare Earth Elements in Carbonate Minerals

More Information
  • BACKGROUND

    Authigenic carbonate minerals deposited from paleo-surface water can retain the fractionation characteristics of rare earth elements in water when deposited. The environmental conditions of the water at the time affect these characteristics. Therefore, these characteristics can be used as a reliable indicator for the paleo-environmental information of deposited water.

    OBJECTIVES

    Based on previous studies, the influence of pH, salinity, dissolved oxygen and hydrothermal input of paleo-surface water on the fractionation characteristics of rare earth elements are reviewed, and the methods of tracing the paleo-environment information and obtaining the characteristics information of rare earth elements in carbonate minerals are summarized.

    METHODS

    At present, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and acid dissolution-inductively coupled plasma-mass spectrometry are the mainstream analytical methods used to obtain the fractionation characteristics of rare earth elements in carbonate minerals.

    RESULTS

    It is rare to find samples that only contain carbonate minerals, so samples are usually carbonate rocks exposed on the earth's surface. However, carbonate rocks have been inevitably mixed with terrigenous minerals (such as clay, quartz, feldspar) and authigenic non-carbonate minerals during their formation, which will disturb the original rare earth elements fractionation characteristics of the carbonate minerals. Unfortunately, neither method mentioned earlier was successful in avoiding this interference.

    CONCLUSIONS

    The future study on the fractionation characteristics of rare earth elements should first explore the methods to accurately obtain the fractionation characteristics of carbonate minerals in carbonate rocks.

  • 加载中
  • [1] 陈道公. 地球化学[M]. 合肥: 中国科学技术大学出版社, 2009: 203-206.

    Google Scholar

    Chen D G. Geochemistry[M]. Hefei: University of Science and Technology of China Press, 2009: 203-206.

    Google Scholar

    [2] 赵平, 李爱民, 刘建中, 等. 应用ICP-MS研究黔西南地区构造蚀变体稀土元素地球化学特征[J]. 岩矿测试, 2017, 36(1): 89-96.

    Google Scholar

    Zhao P, Li A M, Liu J Z, et al. Application of ICP-MS to study REE geochemistry of structure alteration rocks in southwestern Guizhou Province, China[J]. Rock and Mineral Analysis, 2017, 36(1): 89-96.

    Google Scholar

    [3] 陈莹, 王晓蓉, 彭安. 稀土元素分馏作用研究进展[J]. 环境科学进展, 1999, 7(1): 10-17.

    Google Scholar

    Cheng Y, Wang X R, Peng A. The research progress of fractionation among the rare earth elements[J]. Chinese Journal of Environmental Engineering, 1999, 7(1): 10-17.

    Google Scholar

    [4] 佘海东, 范宏瑞, 胡芳芳, 等. 稀土元素在热液中的迁移与沉淀[J]. 岩石学报, 2018, 34(12): 3567-3581.

    Google Scholar

    She H D, Fan H R, Hu F F, et al. Migration and precipitation of rare earth elements in the hydrothermal fluids[J]. Acta Petrologica Sinica, 2018, 34(12): 3567-3581.

    Google Scholar

    [5] 王宇航, 朱园园, 黄建东, 等. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.

    Google Scholar

    Wang Y H, Zhu Y Y, Huang J D, et al. Application of rare earth elements of the marine carbonate rocks in paleoenvironmental researches[J]. Advances in Earth Science, 2018, 33(9): 922-932.

    Google Scholar

    [6] Taylor S R. Abundance of chemical elements in the continental crust: A new table[J]. Geochimica et Cosmochimica Acta, 1964, 28(8): 1273-1285. doi: 10.1016/0016-7037(64)90129-2

    CrossRef Google Scholar

    [7] Taylor S R, Mclennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    CrossRef Google Scholar

    [8] Zhong S, Mucci A. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25℃ and 1atm, and high dissolved REE concentrations[J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 443-453. doi: 10.1016/0016-7037(94)00381-U

    CrossRef Google Scholar

    [9] 万友利, 王剑, 万方, 等. 羌塘盆地南部古油藏带布曲组碳酸盐岩稀土元素特征及意义[J]. 石油实验地质, 2017, 39(5): 655-665.

    Google Scholar

    Wan Y L, Wang J, Wan F, et al. Characteristics and indications of rare earth elements in carbonates in the Buqu Formation, southern Qiangtang Basin[J]. Petroleum Geology & Experiment, 2017, 39(5): 655-665.

    Google Scholar

    [10] 杜洋, 樊太亮, 高志前. 塔里木盆地中下奥陶统碳酸盐岩地球化学特征及其对成岩环境的指示——以巴楚大板塔格剖面和阿克苏蓬莱坝剖面为例[J]. 天然气地球科学, 2016, 27(8): 1509-1523.

    Google Scholar

    Du Y, Fan T L, Gao Z Q. Geochemical characteristics and their implications to diagenetic environment of lower-middle Ordovician carbonate rocks, Tarim Basin, China: A case study of Bachu Dabantage outcrop and Aksu Penglaiba outcrop[J]. Natural Gas Geoscience, 2016, 27(8): 1509-1523.

    Google Scholar

    [11] Liu H Y, Pourret O, Guo H M, et al. Rare earth elements sorption to iron oxyhydroxide: Model development and application to groundwater[J]. Applied Geochemistry, 2017, 87: 158-166. doi: 10.1016/j.apgeochem.2017.10.020

    CrossRef Google Scholar

    [12] Sholkovitz E R. The geochemistry of rare earth elements in the Amazon River estuary[J]. Geochimica et Cosmochimica Acta, 1993, 57(10): 2181-2190. doi: 10.1016/0016-7037(93)90559-F

    CrossRef Google Scholar

    [13] Morton P L, Landing W M, Shiller A M, et al. Shelf inputs and lateral transport of Mn, Co, and Ce in the western North Pacific Ocean[J]. Frontiers in Marine Science, 2019, 6: 1-25. doi: 10.3389/fmars.2019.00001

    CrossRef Google Scholar

    [14] Zhang L Y, Tao C H, Su X, et al. Characteristics of rare earth elements in the surface sediments of southwest Indian Ridge: Implication of grain size for the identification of hydrothermal activity[J]. Geo-Marine Letters, 2022, 42: 7. doi: 10.1007/s00367-022-00729-8

    CrossRef Google Scholar

    [15] Zhou X X, Lu X X, Liu C. Geochemical characteristics of carbonates and indicative significance of the sedimentary environment based on carbon-oxygen isotopes, trace elements and rare earth elements: Case study of the lower Paleozoic carbonates in the Gucheng area, Tarim Basin, China[J]. Arabian Journal of Geosciences, 2021, 14: 1341. doi: 10.1007/s12517-021-07574-6

    CrossRef Google Scholar

    [16] 刘阳, 邵铁全, 刘云焕, 等. 陕南西乡寒武纪梅树村期微古生物群产出层位的地球化学特征及古环境和古气候条件研究[J]. 地质论评, 2022, 68(1): 309-322.

    Google Scholar

    Liu Y, Shao T Q, Liu Y H, et al. Geochemical characteristics and palaeo-environment and palaeoclimate conditions of early Cambrian Meishucun micropalaeontological strata in Xixiang, southern Shaanxi[J]. Geological Review, 2022, 68(1): 309-322.

    Google Scholar

    [17] 贾文博, 关平, 刘沛显, 等. 湖相碳酸盐岩元素测试方法研究[J]. 沉积学报, 2018, 36(4): 842-852.

    Google Scholar

    Jia W B, Guan P, Liu P X, et al. Study on the testing method for elemental composition of lacustrine carbonates[J]. Acta Sedimentologica Sinica, 2018, 36(4): 842-852.

    Google Scholar

    [18] 吴石头, 许春雪, 陈宗定, 等. LA-ICP-MS结合超高压粉末压片技术快速分析碳酸盐岩中Mg, Ca, Sr, Ba和轻稀土元素[J]. 分析试验室, 2019, 38(9): 1089-1094.

    Google Scholar

    Wu S T, Xu C X, Chen Z D, et al. Rapid determination of Mg, Ca, Sr, Ba and LREEs in carbonate by laser ablation-inductively coupled plasma-mass spectrometry in combination with high pressure tableting technique[J]. Chinese Journal of Analysis Laboratory, 2019, 38(9): 1089-1094.

    Google Scholar

    [19] 樊连杰, 裴建国, 赵良杰, 等. 利用ICP-MS研究桂林寨底地下河系统中碳酸盐岩稀土元素特征及其形成环境[J]. 岩矿测试, 2016, 35(3): 251-258.

    Google Scholar

    Fan L J, Pei J G, Zhao L J, et al. Rare earth element composition of carbonate rocks afforded by ICP-MS and formation environment of the Zhaidi underground river in Guilin[J]. Rock and Mineral Analysis, 2016, 35(3): 251-258.

    Google Scholar

    [20] 陈琳莹, 李崇瑛, 陈多福. 泥灰岩中自生方解石的稀土元素酸溶方法研究[J]. 地球化学, 2014, 43(6): 647-654. doi: 10.19700/j.0379-1726.2014.06.009

    CrossRef Google Scholar

    Chen L Y, Li C Y, Chen D F. Dissolution method of authigenic calcites in marls for rare earth elements analysis[J]. Geochimica, 2014, 43(6): 647-654. doi: 10.19700/j.0379-1726.2014.06.009

    CrossRef Google Scholar

    [21] Zhang K, Zhu X K, Yan B. A refined dissolution method for rare earth element studies of bulk carbonate rocks[J]. Chemical Geology, 2015, 412: 82-91. doi: 10.1016/j.chemgeo.2015.07.027

    CrossRef Google Scholar

    [22] Chen D F, Huang Y Y, Yuan X L, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea[J]. Marine Petroleum Geology, 2005, 22(5): 613-621. doi: 10.1016/j.marpetgeo.2005.05.002

    CrossRef Google Scholar

    [23] Quinn K A, Byrne R H, Schijf J. Comparative scavenging of yttrium and the rare earth elements in seawater: Competitive influences of solution and surface chemistry[J]. Aquatic Geochemistry, 2004, 10(1-2): 59-80.

    Google Scholar

    [24] Falcone E E, Federico C, Boudoire G. Geochemistry of trace metals and rare earth elements in shallow marine water affected by hydrothermal fluids at Vulcano (Aeolian Islands, Italy)[J]. Chemical Geology, 2022, 593: 120756. doi: 10.1016/j.chemgeo.2022.120756

    CrossRef Google Scholar

    [25] Ghosh R, Baidya T K. Using BIF magnetite of the Badampahar greenstone belt, iron ore group, East Indian Shield to reconstruct the water chemistry of a 3.3-3.1Ga sea during iron oxyhydroxides precipitation[J]. Precambrian Research, 2017, 301: 102-112. doi: 10.1016/j.precamres.2017.09.006

    CrossRef Google Scholar

    [26] Surya P L, Ray D, Paropkari A L, et al. Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits[J]. Chemical Geology, 2012, 312-313: 127-137. doi: 10.1016/j.chemgeo.2012.03.024

    CrossRef Google Scholar

    [27] Liu H Y, Pourret O, Guo H M, et al. Impact of hydrous manganese and ferric oxides on the behavior of aqueous rare earth elements (REE): Evidence from a modeling approach and implication for the sink of REE[J]. International Journal of Environmental Research and Public Health, 2018, 15(12): 2837. doi: 10.3390/ijerph15122837

    CrossRef Google Scholar

    [28] Ohta A, Kawabe I. REE(Ⅲ) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(Ⅲ) oxidation by δ-MnO2[J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0

    CrossRef Google Scholar

    [29] Casse M, Montero-Serrano J C, St-Onge G, et al. REE distribution and Nd isotope composition of estuarine waters and bulk sediment leachates tracing lithogenic inputs in eastern Canada[J]. Marine Chemistry, 2019, 211: 117-130. doi: 10.1016/j.marchem.2019.03.012

    CrossRef Google Scholar

    [30] Kim T, Kim H, Kim G. Tracing river water versus wastewater sources of trace elements using rare earth elements in the Nakdong River estuarine waters[J]. Marine Pollution Bulletin, 2020, 160: 111589. doi: 10.1016/j.marpolbul.2020.111589

    CrossRef Google Scholar

    [31] 王中良, 刘丛强. 长江口水体混合过程中溶解态稀土元素分布特征[J]. 科学通报, 2000, 45(12): 1322-1326. doi: 10.3321/j.issn:0023-074X.2000.12.018

    CrossRef Google Scholar

    Wang Z L, Liu C Q. Distribution characteristics of dissolved rare earth elements during water mixing in the Yangtze River Estuary[J]. Chinese Science Bulletin, 2000, 45(12): 1322-1326. doi: 10.3321/j.issn:0023-074X.2000.12.018

    CrossRef Google Scholar

    [32] Arienzo M, Ferrara L, Trifuoggi M, et al. Advances in the fate of rare earth elements, REE, in transitional environments: Coasts and estuaries[J]. Water, 2022, 14(3): 401. doi: 10.3390/w14030401

    CrossRef Google Scholar

    [33] 赵思凡, 顾尚义, 沈洪娟, 等. 华南地区南沱冰期海洋氧化还原环境研究——来自贵州松桃南沱组白云岩稀土元素地球化学的指示[J]. 沉积学报, 2020, 38(6): 1140-1151.

    Google Scholar

    Zhao S F, Gu S Y, Shen H J, et al. Ocean redox environment in the Nantuo Ice Age of South China: An indication of the rare earth element geochemistry in the dolomites from the Nantuo Formation in Guizhou Province[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1140-1151.

    Google Scholar

    [34] Garcia-Solsona E, Jeandel C. Balancing rare earth element distributions in the northwestern Mediterranean Sea[J]. Chemical Geology, 2020, 532: 119372. doi: 10.1016/j.chemgeo.2019.119372

    CrossRef Google Scholar

    [35] German C R, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: The ground rules[J]. Paleoceanography, 1990, 5(5): 823-833. doi: 10.1029/PA005i005p00823

    CrossRef Google Scholar

    [36] Liang T, Bao Z D, Zhu X E, et al. Rare earth elements in dolostones and limestones from the Mesoproterozoic Gaoyuzhuang Formation, North China: Implications for penecontem poraneous dolomitization[J]. Journal of Asian Earth Sciences, 2020, 196: 104374. doi: 10.1016/j.jseaes.2020.104374

    CrossRef Google Scholar

    [37] 魏浩天, 刘刚, 韩孝辉, 等. 珊瑚礁对热液流体的地球化学记录——来自南海西沙永兴岛珊瑚礁稀土元素的证据[J]. 海洋地质与第四纪地质, 2020, 40(4): 78-95.

    Google Scholar

    Wei H T, Liu G, Han X H, et al. Geochemical records of hydrothermal fluids in corals: Evidence of rare earth elements from coral reefs in the Yongxing Island, Xisha, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 78-95.

    Google Scholar

    [38] Debruyne D, Hulsbosch N, Muchez P. Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source-sink system[J]. Ore Geology Reviews, 2016, 72: 232-252. doi: 10.1016/j.oregeorev.2015.07.022

    CrossRef Google Scholar

    [39] 赵彦彦, 李三忠, 李达, 等. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学, 2019, 43(1): 141-167.

    Google Scholar

    Zhao Y Y, Li S Z, Li D, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1): 141-167.

    Google Scholar

    [40] Johannessen K C, Vander Roost J, Dahle H, et al. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields[J]. Geochimica et Cosmochimica Acta, 2017, 202: 101-123. doi: 10.1016/j.gca.2016.12.016

    CrossRef Google Scholar

    [41] Johannesson K H, Lyons W B, Yelken M A, et al. Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichments[J]. Chemical Geology, 1996, 133(1-4): 125-144. doi: 10.1016/S0009-2541(96)00072-1

    CrossRef Google Scholar

    [42] 黄清华, 席党鹏, 王辉, 等. 松辽盆地北部中二叠统碳酸盐岩元素和稳定同位素地球化学特征与古环境[J]. 现代地质, 2021, 35(5): 1282-1295.

    Google Scholar

    Huang Q H, Xi D P, Wang H, et al. Element and isotope geochemical characteristics of middle Permian carbon-ates and paleoenvironment in the northern Songliao Basin[J]. Geoscience, 2021, 35(5): 1282-1295.

    Google Scholar

    [43] 史冀忠, 牛亚卓, 许伟, 等. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693.

    Google Scholar

    Shi J Z, Niu Y Z, Xu W, et al. Geochemical characteristics and sedimentary environment of Carboniferous Baishan Formation carbonate in Shibanquanxi of Yingen—Ejin Banner Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 680-693.

    Google Scholar

    [44] 陈聪, 林良彪, 余瑜, 等. 四川盆地南部CLD1井龙潭组地球化学特征及古环境意义[J]. 成都理工大学学报(自然科学版), 2022, 49(2): 225-238.

    Google Scholar

    Chen C, Lin L B, Yu Y, et al. Geochemical characteristics and paleo-environmental significance of Longtan Formation in Well CLD1 in southern Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(2): 225-238.

    Google Scholar

    [45] Li Y, Zhao L, Chen Z Q, et al. Oceanic environmental changes on a shallow carbonate platform (Yangou, Jiangxi Province, South China) during the Permian— Triassic transition: Evidence from rare earth elements in conodont bioapatite[J]. Palaeogeography, Palaeo-climatology, Palaeoecology, 2017, 486: 6-16.

    Google Scholar

    [46] Zhao Y Y, Wei W, Li S Z, et al. Rare earth element geochemistry of carbonates as a proxy for deep-time environmental reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 574: 110443.

    Google Scholar

    [47] 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 2016: 430-431.

    Google Scholar

    Zhao Z H. Principles of trace element geochemistry[M]. Beijing: Science Press, 2016: 430-431.

    Google Scholar

    [48] Fee J A, Gaudette H E, Lyons W B, et al. Rare-earth element distribution in Lake Tyrrell groundwaters, Victoria, Australia[J]. Chemical Geology, 1992, 96(1): 67-93.

    Google Scholar

    [49] 余新亚, 李平平, 邹华耀, 等. 川北元坝气田二叠系长兴组白云岩稀土元素地球化学特征及其指示意义[J]. 古地理学报, 2015, 17(3): 309-320.

    Google Scholar

    Yu X Y, Li P P, Zou H Y, et al. Rare earth element geochemistry of dolostones and its indicative significance of the Permian Changxing Formation in Yuanba Gasfield, northern Sichuan Basin[J]. Journal of Palaeogeography (Chinese Edition), 2015, 17(3): 309-320.

    Google Scholar

    [50] Zhang K, Shields G A. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution[J]. Earth-Science Reviews, 2022, 229: 104015.

    Google Scholar

    [51] Ling H F, Li C F, Chu Z Y, et al. Cerium anomaly variations in Ediacaran—earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127.

    Google Scholar

    [52] Chen J B, Algeo T J, Zhao L S, et al. Diagenetic uptake of rare earth elements by bioapatite, with an example from lower Triassic conodonts of South China[J]. Earth-Science Reviews, 2015, 149: 181-202.

    Google Scholar

    [53] 江冉, 付勇, 王富良, 等. 应用去除碳酸盐法研究滇黔地区"白泥塘层"硅质成分的来源[J]. 岩矿测试, 2016, 35(3): 236-244.

    Google Scholar

    Jiang R, Fu Y, Wang F L, et al. Application of the removing carbonate method to study the origin of silica in "Bainitangceng" of Yunnan—Guizhou area[J]. Rock and Mineral Analysis, 2016, 35(3): 236-244.

    Google Scholar

    [54] Ye Y T, Wang H J, Wang X M, et al. Elemental geochemistry of lower Cambrian phosphate nodules in Guizhou Province, South China: An integrated study by LA-ICP-MS mapping and solution ICP-MS[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109459.

    Google Scholar

    [55] Rieger P, Magnall J M, Gleeson S A, et al. Differentiating between hydrothermal and diagenetic carbonate using rare earth element and yttrium (REE+Y) geochemistry: A case study from the Paleoproterozoic George Fisher massive sulfide Zn deposit, Mount Isa, Australia[J]. Mineralium Deposita, 2022, 57(2): 187-206.

    Google Scholar

    [56] Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148: 329-340.

    Google Scholar

    [57] Kamber B S, Webb G E. The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2509-2525.

    Google Scholar

    [58] Li F, Webb G E, Algeo T J, et al. Modern carbonate ooids preserve ambient aqueous REE signatures[J]. Chemical Geology, 2019, 509: 163-177.

    Google Scholar

    [59] Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland Waterways[J]. Aquatic Geochemistry, 2006, 12: 39-72.

    Google Scholar

    [60] 施泽进, 张瑾, 李文杰, 等. 四川盆地Guadalupian统碳酸盐岩稀土元素和碳-锶同位素特征及地质意义[J]. 岩石学报, 2019, 35(4): 1095-1106.

    Google Scholar

    Shi Z J, Zhang J, Li W J, et al. Characteristics of rare earth element and carbon-strontium isotope and their geological significance of Guadalupian carbonate in Sichuan Basin[J]. Acta Petrologica Sinica, 2019, 35(4): 1095-1106.

    Google Scholar

    [61] Kamber B S, Webb G E, Gallagher M. The rare earth element signal in Archaean microbial carbonate: Information on ocean redox and biogenicity[J]. Journal of the Geological Society, 2014, 171(6): 745-763.

    Google Scholar

    [62] Goldstein S J, Jacobsen S B. Rare earth elements in river waters[J]. Earth and Planetary Science Letters, 1988, 89(1): 35-47.

    Google Scholar

    [63] Zhao M Y, Zheng Y F. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates[J]. Earth and Planetary Science Letters, 2017, 460: 213-221.

    Google Scholar

    [64] Bolhar R, Hofmann A, Siahi M, et al. A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ~3.0Ga Pongola Supergroup, Kaapvaal Craton[J]. Geochimica et Cosmochimica Acta, 2015, 158: 57-78.

    Google Scholar

    [65] Caetano-Filho S, Paula-Santos G M, Dias-Brito D. Carbonate REE+Y signatures from the restricted early marine phase of South Atlantic Ocean (late Aptian—Albian): The influence of early anoxic diagenesis on shale-normalized REE+Y patterns of ancient carbonate rocks[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 500: 69-83.

    Google Scholar

    [66] Zhao Y M, Zheng F Y. Marine carbonate records of terrigenous input into Paleotethyan seawater: Geochemical constraints from Carboniferous limestones[J]. Geochimica et Cosmochimica Acta, 2014, 141: 508-531.

    Google Scholar

    [67] 兰叶芳, 任传建, 李小彩, 等. 黔西北毕节地区中二叠统碳酸盐岩岩石学、地球化学特征及意义[J]. 地球学报, 2022, 3(5): 309-324.

    Google Scholar

    Lan Y F, Ren C J, Li X C, et al. Petrological and geochemical characteristics and their significance of middle permian carbonate rocks in Bijie area, northwestern Guizhou[J]. Acta Geoscientica Sinica, 2022, 3(5): 309-324.

    Google Scholar

    [68] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999(2): 63-66.

    Google Scholar

    Yang S Y, Li C X. Research progress in REE tracer for sediment source[J]. Advances in Earth Science, 1999(2): 63-66.

    Google Scholar

    [69] 郭晓强, 李好斌, 魏荣珠, 等. 山西沁水盆地西缘寒武系碳酸盐岩的元素地球化学特征及其古环境意义[J]. 古地理学报, 2020, 22(2): 349-366.

    Google Scholar

    Guo X Q, Li H B, Wei R Z, et al. Characteristics of elemental geochemistry of the Cambrian carbonate rocks and their palaeoenvironmental implication in western margin of Qinshui Basin, Shanxi Province[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(2): 349-366.

    Google Scholar

    [70] Feng D, Lin Z J, Bian Y Y, et al. Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites[J]. Journal of Asian Earth Sciences, 2013, 65: 27-33.

    Google Scholar

    [71] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.

    Google Scholar

    [72] Ward J F, Verdel C, Campbell M J, et al. Rare earth element geochemistry of Australian Neoproterozoic carbonate: Constraints on the Neoproterozoic oxygenation events[J]. Precambrian Research, 2019, 335: 105471.

    Google Scholar

    [73] Gong Q L, Li F, Lu C J, et al. Tracing seawater- and terrestrial-sourced REE signatures in detritally contaminated, diagenetically altered carbonate rocks[J]. Chemical Geology, 2021, 570: 120169.

    Google Scholar

    [74] Della P G, Webb G E, Mcdonald I. REE patterns of microbial carbonate and cements from Sinemurian (lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco)[J]. Chemical Geology, 2015, 400: 65-86.

    Google Scholar

    [75] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014, 381: 1-9.

    Google Scholar

    [76] Auer G, Reuter M, Hauzenberger C A, et al. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates[J]. Geochimica et Cosmochimica Acta, 2017, 203: 140-156.

    Google Scholar

    [77] 娄方炬, 顾尚义. 贵州织金寒武纪磷块岩中磷灰石和白云石稀土元素的LA-ICP-MS分析: 对沉积环境和成岩过程的指示意义[J]. 中国稀土学报, 2020, 38(2): 225-239.

    Google Scholar

    Lou F J, Gu S Y. LA-ICP-MS REE analyses for phosphates and dolomites in cambrian phosphorite in Zhijin, Guizhou Province: Implication for depositional conditions and diagenetic processes[J]. Journal of the Chinese Society of Rare Earths, 2020, 38(2): 225-239.

    Google Scholar

    [78] Baldwin G J, Thurston P C, Kamber B S. High-precision rare earth element, nickel, and chromium chemistry of chert microbands pre-screened with in-situ analysis[J]. Chemical Geology, 2011, 285(1): 133-143.

    Google Scholar

    [79] Loope G R, Kump L R, Arthur M A. Shallow water redox conditions from the Permian—Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China[J]. Chemical Geology, 2013, 351: 195-208.

    Google Scholar

    [80] Bi D, Shi X, Huang M, et al. Geochemical and miner-alogical characteristics of deep-sea sediments from the western North Pacific Ocean: Constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318.

    Google Scholar

    [81] Mishra P K, Mohanty S P. Geochemistry of carbonate rocks of the Chilpi Group, Bastar Craton, India: Implications on ocean paleoredox conditions at the late Paleoproterozoic Era[J]. Precambrian Reserach, 2021, 353: 106023.

    Google Scholar

    [82] Tostevin R, Shields G A, Tarbuck G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(1)

Article Metrics

Article views(2634) PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint