Citation: | ZHANG Xiaorui, WU Bailin, LEI Angui, YANG Songlin, YAO Luhang, PANG Kang, BAO Zhian, WANG Miao, HAO Xin, LIU Mingyi, LI Qi, LIN Zhouyang. In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717-732. doi: 10.15898/j.cnki.11-2131/td.202111300192 |
Sandstone-type uranium deposits contain a large number of pyrites of different shapes and stages. It is difficult to accurately discriminate the pyrite formed before, during or after the metallogenic period solely by observation of pyrite morphology by mineralogy and electron probe microanalysis. Pyrites during the metallogenic period are important information carriers for the genesis and formation process of uranium deposits, and their accurate identification is of great significance. Previous studies both domestically and internationally have used the LA-MC-ICP-MS method to analyze Pb isotopes, but this method has low analytical precision for low-content Pb samples and it is difficult to obtain 204Pb data.
To identify metallogenic and non-metallogenic pyrites by in situ micro-scale Pb isotopes.
Femtosecond laser ablation multi-collector inductively coupled plasma-mass spectrometry (fs-LA-MC-ICP-MS) was used to determine the lead isotope of pyrite in uranium ores.
Under the mineralogy microscope, it is clear that the pyrite is related to mineralization and its 206Pb/204Pb ratio is more than ten times or even dozens of times larger than the normal Clark value. 207Pb/204Pb ratio is slightly different, and 208Pb/204Pb ratio is constant. The occurrence of strawberry-shaped pyrites, and non-metallogenic pyrites with uranium minerals growing around them but not interspersed, have normal a 206Pb/204Pb ratio. Pyrites without any contact relationship have no obvious regularity in its Pb isotopes.
In-situ micro-scale Pb isotopic difference of pyrites was combined with appropriate observation of mineralogy morphology and occurrence, resulting in pyrites in the metallogenic period being more accurately identified than previously.
[1] | 陈祖伊, 郭庆银. 砂岩型铀矿床硫化物还原富集铀的机制[J]. 铀矿地质, 2007, 23(6): 321-327, 334. doi: 10.3969/j.issn.1000-0658.2007.06.001 Chen Z Y, Guo Q Y. Mechanism of sulphide reduction and enrichment of uranium in sandstone-type uranium deposits[J]. Uranium Geology, 2007, 23(6): 321-327, 334. doi: 10.3969/j.issn.1000-0658.2007.06.001 |
[2] | Wu B L, Qiu X W, Zhang C, et al. Geological effect of hydrocarbon dissipation and epigenetic alteration in northeast of Ordos Basin[J]. Journal of Mining and Metallurgy, 2009, 45(1): 33-38. |
[3] | 吴柏林, 魏安军, 胡亮, 等. 内蒙古东胜铀矿区后生蚀变的稳定同位素特征及其地质意义[J]. 地质通报, 2016, 35(12): 2133-2145. doi: 10.3969/j.issn.1671-2552.2016.12.021 Wu B L, Wei A J, Hu L, et al. Stable isotope characteristics of post-generating alteration in Dongsheng uranium mining area, Inner Mongolia and its geological significance[J]. Geological Bulletin of China, 2016, 35(12): 2133-2145. doi: 10.3969/j.issn.1671-2552.2016.12.021 |
[4] | 胡亮, 吴柏林. 东胜矿床稳定同位素地球化学特征及地质意义[J]. 河北工程大学学报(自然科学版), 2009, 26(4): 61-66, 70. doi: 10.3969/j.issn.1673-9469.2009.04.016 Hu L, Wu B L. Stable isotope geochemical characteristics and geological significance of Dongsheng deposit[J]. Journal of Hebei University of Engineering (Naturcal Science Edition), 2009, 26(4): 61-66, 70. doi: 10.3969/j.issn.1673-9469.2009.04.016 |
[5] | 庞康, 吴柏林, 孙涛, 等. 鄂尔多斯盆地砂岩型铀矿碳酸盐岩碳氧同位素及其天然气-水混合流体作用特征[J]. 中国地质, 2021, 48(3-5): 1-24. Pang K, Wu B L, Sun T, et al. Carbon and oxygen isotopes of carbonate rocks of sandstone-type uranium deposits in the Ordos Basin and their natural gas-water mixed fluid interaction characteristics[J]. Geology in China, 2021, 48(3-5): 1-24. |
[6] | 吴柏林, 张婉莹, 宋子升, 等. 鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J]. 地质学报, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009 Wu B L, Zhang W Y, Song Z S, et al. Geological and geochemical characteristics of uranium minerals in sandstone-type uranium deposits in the northern Ordos Basin and their genetic significance[J]. Acta Geologica Sinica, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009 |
[7] | 庞康. 鄂尔多斯盆地北部砂岩型铀矿原位微区稳定同位素特征及其地质意义[D]. 西安: 西北大学, 2018. Pang K. Stable isotopic characteristics of in-situ micro-zones of sandstone-type uranium deposits in the northern Ordos Basin and their geological significance[D]. Xi'an: Northwest University, 2018. |
[8] | 郝欣. 松辽盆地钱家店砂岩型铀矿床成矿特点及其成因分析[D]. 西安: 西北大学, 2020. Hao X. Metallogenic characteristics and genetic analysis of Qianjiadian sandstone-type uranium deposit in Songliao Basin[D]. Xi'an: Northwest University, 2020. |
[9] | 陈梦雅, 聂逢君, Fayek M. 开鲁盆地砂岩型铀矿中黄铁矿与铀矿化成因关系探讨[J]. 地球学报, 2021, 42(6): 868-880. Chen M Y, Nie F J, Fayek M. Discussion on the genetic relationship between pyrite and uranium mineralization in sandstone-type uranium deposits in Kailu Basin[J]. Acta Geoscientica Sinica, 2021, 42(6): 868-880. |
[10] | 黄广文, 余福承, 潘家永, 等. 伊犁盆地蒙其古尔铀矿床黄铁矿成因特征及其对铀成矿作用的指示[J]. 中国地质, 2021, 48(2): 507-519. Huang G W, Yu F C, Pan J Y, et al. Genetic characteristics of pyrite from the Mengqiguer uranium deposit in Yili Basin and its indications for uranium mineralization[J]. Geology in China, 2021, 48(2): 507-519. |
[11] | 刘文泉, 刘斌, 罗强, 等. 粤北书楼丘铀矿床黄铁矿原位微量元素、硫同位素组成及矿床成因指示[J]. 地球科学, 2022, 47(1): 178-191. Liu W Q, Liu B, Luo Q, et al. In situ trace elements and sulfur isotopic compositions of pyrite in the Shulouqiu uranium deposit in northern Guangdong and indications of the deposit origin[J]. Geoscience, 2022, 47(1): 178-191. |
[12] | 刘文泉, 江卫兵, 李海东, 等. 下庄竹山下铀矿床黄铁矿元素地球化学特征及其表征意义[J]. 铀矿地质, 2021, 37(1): 15-27. doi: 10.3969/j.issn.1672-0636.2021.01.002 Liu W Q, Jiang W B, Li H D, et al. Elemental geochemical characteristics and characterization significance of pyrite in Xiazhuang Zhushan Xia uranium deposit[J]. Uranium Geology, 2021, 37(1): 15-27. doi: 10.3969/j.issn.1672-0636.2021.01.002 |
[13] | Mathez E A, Waight T. Lead isotopic disequilibrium be-tween sulfide and plagioclase in the Bushveld Complex and the chemical evolution of large layered intrusion[J]. Geochimica et Cosmochimica Acta, 2003, 67: 1875-1888. doi: 10.1016/S0016-7037(02)01294-2 |
[14] | Tyrrell S, Haughton P D W, Daly J S, et al. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to upper Carboniferous paleodrainage, northern Englad[J]. Journal of Sedimentary Research, 2006, 76: 324-345. doi: 10.2110/jsr.2006.023 |
[15] | Davidson J P, Tepley F J Ⅲ. Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts[J]. Science, 1997, 275: 826-829. doi: 10.1126/science.275.5301.826 |
[16] | 邢波, 郑伟, 欧阳志侠, 等. 粤西庙山铜多金属矿床硫化物原位微区分析及S同位素对矿床成因的制约[J]. 地质学报, 2016, 90(5): 971-986. doi: 10.3969/j.issn.0001-5717.2016.05.010 Xing B, Zheng W, Ouyang Z X, et al. In-situ micro-area analysis of sulfide in the Miaoshan copper polymetallic deposit in western Guangdong and the restriction of S isotope on the genesis of the deposit[J]. Acta Geologica Sinica, 2016, 90(5): 971-986. doi: 10.3969/j.issn.0001-5717.2016.05.010 |
[17] | 聂小松, 夏小平, 张乐, 等. 碎屑电气石的LA-MC-ICPMS硼同位素原位微区分析及其源区示踪: 以哀牢山构造带为例[J]. 地球化学, 2015, 44(5): 438-449. doi: 10.3969/j.issn.0379-1726.2015.05.004 Nie X S, Xia X P, Zhang L, et al. LA-MC-ICPMS boron isotope in-situ micro-area analysis of detrital tourmaline and its source tracing: Taking the Ailaoshan structural belt as an example[J]. Geochimica, 2015, 44(5): 438-449. doi: 10.3969/j.issn.0379-1726.2015.05.004 |
[18] | 熊潇, 朱赖民, 袁洪林, 等. 北秦岭铜峪铜矿床铅同位素的fsLA-MC-ICP-MS微区原位分析测定及其地质意义[J]. 科学通报, 2016, 61(25): 2811-2822. Xiong X, Zhu L M, Yuan H L, et al. The fsLA-MC-ICP-MS micro-area in-situ analysis and determination of lead isotopes in the Tongyu copper deposit in North Qinling and its geological significance[J]. Chinese Science Bulletin, 2016, 61(25): 2811-2822. |
[19] | Zartman R E, Doe B R. Plumbotectonics—The model[J]. Tectono Physics, 1981, 75(1-2): 135-136. doi: 10.1016/0040-1951(81)90213-4 |
[20] | 陈好寿. 铅同位素分析在矿床研究中的应用[J]. 地质地球化学, 1977(2): 26-37. Chen H S. Application of lead isotope analysis in mineral deposit research[J]. Geogeochemistry, 1977(2): 26-37. |
[21] | 夏毓亮. 铅同位素方法寻找铀矿[M]. 北京: 原子能出版社, 1982. Xia Y L. Lead isotope method to find uranium deposits[M]. Beijing: Atomic Energy Press, 1982. |
[22] | 张文, 刘勇胜, 胡兆初, 等. 微区原位LA-MC-ICP-MS铅同位素分析研究进展[J]. 矿物岩石地球化学通报, 2018, 37(5): 812-826. Zhang W, Liu S W, Hu Z C, et al. Research progress in micro-area in situ LA-MC-ICP-MS lead isotope analysis[J]. Bulletin of Mineral Rock Geochemistry, 2018, 37(5): 812-826. |
[23] | Zhang W, Hu Z C, Yang L, et al. Improved inter-calibration of faraday cup and ion counting for in situ Pb isotope measurements using LA-MC-ICP-MS: Application to the study of the origin of the Fangshan Pluton, North China[J]. Geostandards and Geoanalytical Research, 2015, 39(4): 467-487. |
[24] | Shaheen M E, Gagnon J E, Fryer B J, et al. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences[J]. Chemical Geology, 2012, 330-331: 260-273. |
[25] | Chen K Y, Yuan H L, Bao Z A, et al. Precise and accurate in situ determination of lead isotope ratios in NIST, USGS, MPI-DING and CGSG glass reference materials using femtosecond laser ablation MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38(1): 5-21. |
[26] | 陈开运, 范超, 袁洪林, 等. 飞秒激光剥蚀-多接收电感耦合等离子质谱原位微区分析青铜中铅同位素组成: 以古铜钱币为例[J]. 光谱学与光谱分析, 2013, 33(5): 1342-1349. Chen K Y, Fan C, Yuan H L, et al. Femtosecond laser ablation-multi-receiver inductively coupled plasma mass spectrometry in situ micro-analysis of lead isotopic composition in bronze—Taking bronze coins as an example[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1342-1349. |
[27] | Yuan H L, Yin C, Liu X, et al. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Science China: Earth Sciences, 2015, 58(10): 1713-1721. |
[28] | Bao Z A, Yuan H L, Zong C L, et al. Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fs LA-(MC)-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(4): 1012-1022. |
[29] | 吴柏林, 刘池阳, 张复新, 等. 东胜砂岩型铀矿后生蚀变地球化学性质及其成矿意义[J]. 地质学报, 2006, 80(5): 740-747. Wu B L, Liu C Y, Zhang F X, et al. Dongsheng sandstone type uranium deposit, epigenetic alteration geochemical characteristics and its metallogenic significance[J]. Acta Geologica Sinica, 2006, 80(5): 740-747. |
[30] | 张龙, 吴柏林, 刘池阳, 等. 鄂尔多斯盆地北部砂岩型铀矿直罗组物源分析及其铀成矿意义[J]. 地质学报, 2016, 90(12): 3441-3453. Zhang L, Wu B L, Liu C Y, et al. Provenance analysis of the Zhiluo Formation in the sandstone-hosted uranium deposits in the Northern Ordos Basin and implications for uranium mineralization[J]. Acta Geologica Sinica, 2016, 90(12): 3441-3453. |
[31] | 张术根. 矿相学[M]. 长沙: 中南大学出版社, 2014. Zhang S G. Mineralogy[M]. Changsha: Central South University Press, 2014. |
[32] | 张宏飞, 高山. 地球化学[M]. 北京: 科学出版社, 2012. Zhang H F, Gao S. Geochemistry[M]. Beijing: Science Press, 2012. |
The pyrite is distributed in the net vein, and no uranium mineral is found in the ore; The pyrite is not in direct contact with uranium minerals. Sample number: ZKD112-96-1 (The test point position is the cross in the upper right figure, the same below)
The pyrite is distributed in strawberry shape in ore; The pyrite is the product of diagenesis or pre-mineralization. Sample number: ZKD96-31-1
Uranium minerals grow around the pyrite without interspersing; The pyrite is a pre-mineralization product. Sample number: ZKD96-31-5
Uranium minerals grow around the pyrite without interspersing; The pyrite is a pre-mineralization product. Sample number: ZKD96-31-9
The pyrite is distributed in the net vein, and no uranium mineral is found in the ore; The pyrite is not in direct contact with uranium minerals. Sample number: ZKN8-29-1-4
The pyrite is distributed in a gelatinized ring pattern in the ore, interexisting with uranium minerals; The pyrite is the product of mineralization period. Sample number: ZKB112-47-1
The pyrite is distributed in a gelatinized ring pattern in the ore, interexisting with uranium minerals; The pyrite is the product of mineralization period. Sample number: ZKB112-47-2
The pyrite intersperses with uranium minerals in ore; The pyrite is the product of mineralization period. Sample number: ZKD176-47-3
The pyrite intersperses with uranium minerals in ore; The pyrite is the product of mineralization period. Sample number: ZKD176-47-5
The pyrite intersperses with uranium minerals in ore; The pyrite is the product of mineralization period. Sample number: ZKN16-56-11
Main indicator that distinguishes pyrite from metallogenic and non-metallogenic periods: (a) the ratio difference of 206Pb/204Pb is large, (b) the ratio of 206Pb/204Pb is slightly different, and (c) the ratio of 206Pb/204Pb is almost no difference