Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 5
Article Contents

ZHANG Xiaorui, WU Bailin, LEI Angui, YANG Songlin, YAO Luhang, PANG Kang, BAO Zhian, WANG Miao, HAO Xin, LIU Mingyi, LI Qi, LIN Zhouyang. In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717-732. doi: 10.15898/j.cnki.11-2131/td.202111300192
Citation: ZHANG Xiaorui, WU Bailin, LEI Angui, YANG Songlin, YAO Luhang, PANG Kang, BAO Zhian, WANG Miao, HAO Xin, LIU Mingyi, LI Qi, LIN Zhouyang. In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2022, 41(5): 717-732. doi: 10.15898/j.cnki.11-2131/td.202111300192

In-situ Micro-scale Pb Isotope Identification Characteristics of Metallogenic and Non-metallogenic Pyrites in Sandstone-type Uranium Deposits

More Information
  • BACKGROUND

    Sandstone-type uranium deposits contain a large number of pyrites of different shapes and stages. It is difficult to accurately discriminate the pyrite formed before, during or after the metallogenic period solely by observation of pyrite morphology by mineralogy and electron probe microanalysis. Pyrites during the metallogenic period are important information carriers for the genesis and formation process of uranium deposits, and their accurate identification is of great significance. Previous studies both domestically and internationally have used the LA-MC-ICP-MS method to analyze Pb isotopes, but this method has low analytical precision for low-content Pb samples and it is difficult to obtain 204Pb data.

    OBJECTIVES

    To identify metallogenic and non-metallogenic pyrites by in situ micro-scale Pb isotopes.

    METHODS

    Femtosecond laser ablation multi-collector inductively coupled plasma-mass spectrometry (fs-LA-MC-ICP-MS) was used to determine the lead isotope of pyrite in uranium ores.

    RESULTS

    Under the mineralogy microscope, it is clear that the pyrite is related to mineralization and its 206Pb/204Pb ratio is more than ten times or even dozens of times larger than the normal Clark value. 207Pb/204Pb ratio is slightly different, and 208Pb/204Pb ratio is constant. The occurrence of strawberry-shaped pyrites, and non-metallogenic pyrites with uranium minerals growing around them but not interspersed, have normal a 206Pb/204Pb ratio. Pyrites without any contact relationship have no obvious regularity in its Pb isotopes.

    CONCLUSIONS

    In-situ micro-scale Pb isotopic difference of pyrites was combined with appropriate observation of mineralogy morphology and occurrence, resulting in pyrites in the metallogenic period being more accurately identified than previously.

  • 加载中
  • [1] 陈祖伊, 郭庆银. 砂岩型铀矿床硫化物还原富集铀的机制[J]. 铀矿地质, 2007, 23(6): 321-327, 334. doi: 10.3969/j.issn.1000-0658.2007.06.001

    CrossRef Google Scholar

    Chen Z Y, Guo Q Y. Mechanism of sulphide reduction and enrichment of uranium in sandstone-type uranium deposits[J]. Uranium Geology, 2007, 23(6): 321-327, 334. doi: 10.3969/j.issn.1000-0658.2007.06.001

    CrossRef Google Scholar

    [2] Wu B L, Qiu X W, Zhang C, et al. Geological effect of hydrocarbon dissipation and epigenetic alteration in northeast of Ordos Basin[J]. Journal of Mining and Metallurgy, 2009, 45(1): 33-38.

    Google Scholar

    [3] 吴柏林, 魏安军, 胡亮, 等. 内蒙古东胜铀矿区后生蚀变的稳定同位素特征及其地质意义[J]. 地质通报, 2016, 35(12): 2133-2145. doi: 10.3969/j.issn.1671-2552.2016.12.021

    CrossRef Google Scholar

    Wu B L, Wei A J, Hu L, et al. Stable isotope characteristics of post-generating alteration in Dongsheng uranium mining area, Inner Mongolia and its geological significance[J]. Geological Bulletin of China, 2016, 35(12): 2133-2145. doi: 10.3969/j.issn.1671-2552.2016.12.021

    CrossRef Google Scholar

    [4] 胡亮, 吴柏林. 东胜矿床稳定同位素地球化学特征及地质意义[J]. 河北工程大学学报(自然科学版), 2009, 26(4): 61-66, 70. doi: 10.3969/j.issn.1673-9469.2009.04.016

    CrossRef Google Scholar

    Hu L, Wu B L. Stable isotope geochemical characteristics and geological significance of Dongsheng deposit[J]. Journal of Hebei University of Engineering (Naturcal Science Edition), 2009, 26(4): 61-66, 70. doi: 10.3969/j.issn.1673-9469.2009.04.016

    CrossRef Google Scholar

    [5] 庞康, 吴柏林, 孙涛, 等. 鄂尔多斯盆地砂岩型铀矿碳酸盐岩碳氧同位素及其天然气-水混合流体作用特征[J]. 中国地质, 2021, 48(3-5): 1-24.

    Google Scholar

    Pang K, Wu B L, Sun T, et al. Carbon and oxygen isotopes of carbonate rocks of sandstone-type uranium deposits in the Ordos Basin and their natural gas-water mixed fluid interaction characteristics[J]. Geology in China, 2021, 48(3-5): 1-24.

    Google Scholar

    [6] 吴柏林, 张婉莹, 宋子升, 等. 鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J]. 地质学报, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    CrossRef Google Scholar

    Wu B L, Zhang W Y, Song Z S, et al. Geological and geochemical characteristics of uranium minerals in sandstone-type uranium deposits in the northern Ordos Basin and their genetic significance[J]. Acta Geologica Sinica, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009

    CrossRef Google Scholar

    [7] 庞康. 鄂尔多斯盆地北部砂岩型铀矿原位微区稳定同位素特征及其地质意义[D]. 西安: 西北大学, 2018.

    Google Scholar

    Pang K. Stable isotopic characteristics of in-situ micro-zones of sandstone-type uranium deposits in the northern Ordos Basin and their geological significance[D]. Xi'an: Northwest University, 2018.

    Google Scholar

    [8] 郝欣. 松辽盆地钱家店砂岩型铀矿床成矿特点及其成因分析[D]. 西安: 西北大学, 2020.

    Google Scholar

    Hao X. Metallogenic characteristics and genetic analysis of Qianjiadian sandstone-type uranium deposit in Songliao Basin[D]. Xi'an: Northwest University, 2020.

    Google Scholar

    [9] 陈梦雅, 聂逢君, Fayek M. 开鲁盆地砂岩型铀矿中黄铁矿与铀矿化成因关系探讨[J]. 地球学报, 2021, 42(6): 868-880.

    Google Scholar

    Chen M Y, Nie F J, Fayek M. Discussion on the genetic relationship between pyrite and uranium mineralization in sandstone-type uranium deposits in Kailu Basin[J]. Acta Geoscientica Sinica, 2021, 42(6): 868-880.

    Google Scholar

    [10] 黄广文, 余福承, 潘家永, 等. 伊犁盆地蒙其古尔铀矿床黄铁矿成因特征及其对铀成矿作用的指示[J]. 中国地质, 2021, 48(2): 507-519.

    Google Scholar

    Huang G W, Yu F C, Pan J Y, et al. Genetic characteristics of pyrite from the Mengqiguer uranium deposit in Yili Basin and its indications for uranium mineralization[J]. Geology in China, 2021, 48(2): 507-519.

    Google Scholar

    [11] 刘文泉, 刘斌, 罗强, 等. 粤北书楼丘铀矿床黄铁矿原位微量元素、硫同位素组成及矿床成因指示[J]. 地球科学, 2022, 47(1): 178-191.

    Google Scholar

    Liu W Q, Liu B, Luo Q, et al. In situ trace elements and sulfur isotopic compositions of pyrite in the Shulouqiu uranium deposit in northern Guangdong and indications of the deposit origin[J]. Geoscience, 2022, 47(1): 178-191.

    Google Scholar

    [12] 刘文泉, 江卫兵, 李海东, 等. 下庄竹山下铀矿床黄铁矿元素地球化学特征及其表征意义[J]. 铀矿地质, 2021, 37(1): 15-27. doi: 10.3969/j.issn.1672-0636.2021.01.002

    CrossRef Google Scholar

    Liu W Q, Jiang W B, Li H D, et al. Elemental geochemical characteristics and characterization significance of pyrite in Xiazhuang Zhushan Xia uranium deposit[J]. Uranium Geology, 2021, 37(1): 15-27. doi: 10.3969/j.issn.1672-0636.2021.01.002

    CrossRef Google Scholar

    [13] Mathez E A, Waight T. Lead isotopic disequilibrium be-tween sulfide and plagioclase in the Bushveld Complex and the chemical evolution of large layered intrusion[J]. Geochimica et Cosmochimica Acta, 2003, 67: 1875-1888. doi: 10.1016/S0016-7037(02)01294-2

    CrossRef Google Scholar

    [14] Tyrrell S, Haughton P D W, Daly J S, et al. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to upper Carboniferous paleodrainage, northern Englad[J]. Journal of Sedimentary Research, 2006, 76: 324-345. doi: 10.2110/jsr.2006.023

    CrossRef Google Scholar

    [15] Davidson J P, Tepley F J Ⅲ. Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts[J]. Science, 1997, 275: 826-829. doi: 10.1126/science.275.5301.826

    CrossRef Google Scholar

    [16] 邢波, 郑伟, 欧阳志侠, 等. 粤西庙山铜多金属矿床硫化物原位微区分析及S同位素对矿床成因的制约[J]. 地质学报, 2016, 90(5): 971-986. doi: 10.3969/j.issn.0001-5717.2016.05.010

    CrossRef Google Scholar

    Xing B, Zheng W, Ouyang Z X, et al. In-situ micro-area analysis of sulfide in the Miaoshan copper polymetallic deposit in western Guangdong and the restriction of S isotope on the genesis of the deposit[J]. Acta Geologica Sinica, 2016, 90(5): 971-986. doi: 10.3969/j.issn.0001-5717.2016.05.010

    CrossRef Google Scholar

    [17] 聂小松, 夏小平, 张乐, 等. 碎屑电气石的LA-MC-ICPMS硼同位素原位微区分析及其源区示踪: 以哀牢山构造带为例[J]. 地球化学, 2015, 44(5): 438-449. doi: 10.3969/j.issn.0379-1726.2015.05.004

    CrossRef Google Scholar

    Nie X S, Xia X P, Zhang L, et al. LA-MC-ICPMS boron isotope in-situ micro-area analysis of detrital tourmaline and its source tracing: Taking the Ailaoshan structural belt as an example[J]. Geochimica, 2015, 44(5): 438-449. doi: 10.3969/j.issn.0379-1726.2015.05.004

    CrossRef Google Scholar

    [18] 熊潇, 朱赖民, 袁洪林, 等. 北秦岭铜峪铜矿床铅同位素的fsLA-MC-ICP-MS微区原位分析测定及其地质意义[J]. 科学通报, 2016, 61(25): 2811-2822.

    Google Scholar

    Xiong X, Zhu L M, Yuan H L, et al. The fsLA-MC-ICP-MS micro-area in-situ analysis and determination of lead isotopes in the Tongyu copper deposit in North Qinling and its geological significance[J]. Chinese Science Bulletin, 2016, 61(25): 2811-2822.

    Google Scholar

    [19] Zartman R E, Doe B R. Plumbotectonics—The model[J]. Tectono Physics, 1981, 75(1-2): 135-136. doi: 10.1016/0040-1951(81)90213-4

    CrossRef Google Scholar

    [20] 陈好寿. 铅同位素分析在矿床研究中的应用[J]. 地质地球化学, 1977(2): 26-37.

    Google Scholar

    Chen H S. Application of lead isotope analysis in mineral deposit research[J]. Geogeochemistry, 1977(2): 26-37.

    Google Scholar

    [21] 夏毓亮. 铅同位素方法寻找铀矿[M]. 北京: 原子能出版社, 1982.

    Google Scholar

    Xia Y L. Lead isotope method to find uranium deposits[M]. Beijing: Atomic Energy Press, 1982.

    Google Scholar

    [22] 张文, 刘勇胜, 胡兆初, 等. 微区原位LA-MC-ICP-MS铅同位素分析研究进展[J]. 矿物岩石地球化学通报, 2018, 37(5): 812-826.

    Google Scholar

    Zhang W, Liu S W, Hu Z C, et al. Research progress in micro-area in situ LA-MC-ICP-MS lead isotope analysis[J]. Bulletin of Mineral Rock Geochemistry, 2018, 37(5): 812-826.

    Google Scholar

    [23] Zhang W, Hu Z C, Yang L, et al. Improved inter-calibration of faraday cup and ion counting for in situ Pb isotope measurements using LA-MC-ICP-MS: Application to the study of the origin of the Fangshan Pluton, North China[J]. Geostandards and Geoanalytical Research, 2015, 39(4): 467-487.

    Google Scholar

    [24] Shaheen M E, Gagnon J E, Fryer B J, et al. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences[J]. Chemical Geology, 2012, 330-331: 260-273.

    Google Scholar

    [25] Chen K Y, Yuan H L, Bao Z A, et al. Precise and accurate in situ determination of lead isotope ratios in NIST, USGS, MPI-DING and CGSG glass reference materials using femtosecond laser ablation MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2014, 38(1): 5-21.

    Google Scholar

    [26] 陈开运, 范超, 袁洪林, 等. 飞秒激光剥蚀-多接收电感耦合等离子质谱原位微区分析青铜中铅同位素组成: 以古铜钱币为例[J]. 光谱学与光谱分析, 2013, 33(5): 1342-1349.

    Google Scholar

    Chen K Y, Fan C, Yuan H L, et al. Femtosecond laser ablation-multi-receiver inductively coupled plasma mass spectrometry in situ micro-analysis of lead isotopic composition in bronze—Taking bronze coins as an example[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1342-1349.

    Google Scholar

    [27] Yuan H L, Yin C, Liu X, et al. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Science China: Earth Sciences, 2015, 58(10): 1713-1721.

    Google Scholar

    [28] Bao Z A, Yuan H L, Zong C L, et al. Simultaneous determination of trace elements and lead isotopes in fused silicate rock powders using a boron nitride vessel and fs LA-(MC)-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(4): 1012-1022.

    Google Scholar

    [29] 吴柏林, 刘池阳, 张复新, 等. 东胜砂岩型铀矿后生蚀变地球化学性质及其成矿意义[J]. 地质学报, 2006, 80(5): 740-747.

    Google Scholar

    Wu B L, Liu C Y, Zhang F X, et al. Dongsheng sandstone type uranium deposit, epigenetic alteration geochemical characteristics and its metallogenic significance[J]. Acta Geologica Sinica, 2006, 80(5): 740-747.

    Google Scholar

    [30] 张龙, 吴柏林, 刘池阳, 等. 鄂尔多斯盆地北部砂岩型铀矿直罗组物源分析及其铀成矿意义[J]. 地质学报, 2016, 90(12): 3441-3453.

    Google Scholar

    Zhang L, Wu B L, Liu C Y, et al. Provenance analysis of the Zhiluo Formation in the sandstone-hosted uranium deposits in the Northern Ordos Basin and implications for uranium mineralization[J]. Acta Geologica Sinica, 2016, 90(12): 3441-3453.

    Google Scholar

    [31] 张术根. 矿相学[M]. 长沙: 中南大学出版社, 2014.

    Google Scholar

    Zhang S G. Mineralogy[M]. Changsha: Central South University Press, 2014.

    Google Scholar

    [32] 张宏飞, 高山. 地球化学[M]. 北京: 科学出版社, 2012.

    Google Scholar

    Zhang H F, Gao S. Geochemistry[M]. Beijing: Science Press, 2012.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(2337) PDF downloads(108) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint