Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 2
Article Contents

YUN Yuanjiao, FAN Chenglong, LYU Xiping, SHI Zhefeng, DOU Zhihui, WANG Yitian, WANG Mengqi, YE Huishou. Application of EPMA and LA-ICP-MS to Study Mineralogy of Arsenopyrite from the Haoyaoerhudong Gold Deposit, Inner Mongolia, China[J]. Rock and Mineral Analysis, 2022, 41(2): 211-225. doi: 10.15898/j.cnki.11-2131/td.202111240184
Citation: YUN Yuanjiao, FAN Chenglong, LYU Xiping, SHI Zhefeng, DOU Zhihui, WANG Yitian, WANG Mengqi, YE Huishou. Application of EPMA and LA-ICP-MS to Study Mineralogy of Arsenopyrite from the Haoyaoerhudong Gold Deposit, Inner Mongolia, China[J]. Rock and Mineral Analysis, 2022, 41(2): 211-225. doi: 10.15898/j.cnki.11-2131/td.202111240184

Application of EPMA and LA-ICP-MS to Study Mineralogy of Arsenopyrite from the Haoyaoerhudong Gold Deposit, Inner Mongolia, China

More Information
  • BACKGROUND

    The composition of major and trace elements in arsenopyrite can be used to identify the occurrence of elements and explore the remobilization and migration behaviour of elements in different stages. The Haoyaoerhudong gold deposit in Inner Mongolia is a super large gold deposit hosted in the black shales of the Bayan Obo Group. Gold-bearing minerals such as arsenopyrite and loellingite are present. Previous researchers have used the traditional powder dissolution method to analyze the isotope of the ore and discussed the source of ore-forming materials, but the migration and enrichment mechanism of gold has not been unraveled.

    OBJECTIVES

    To understand the gold migration and enrichment process of this deposit.

    METHODS

    Based on mineralogy, different types of arsenopyrite were analyzed by electron probe microanalyzer (EPMA) and inductively coupled plasma-mass spectrometry (ICP-MS). The data measured by EPMA was corrected by ZAF program, and the data measured by LA-ICP-MS was quantitatively calculated by "no internal standard-matrix normalized calibration".

    RESULTS

    The results showed that loellingite was developed in arsenopyrite. They can be divided into Apy-Ⅰ1, Apy-Ⅰ2, Lo-Ⅰ in progressive shear deformation stage and Apy-Ⅱ1, Apy-Ⅱ2 and Lo-Ⅱ in post shear deformation stage. The major element composition of arsenopyrite in different generations was stable, with a small amount of Co and Ni and a trace amount of Sb, Te, Bi, Pb, Au and Ag. Cobalt was higher in Apy-Ⅱ1 and Apy-Ⅱ2, whereas Au, Bi, Pb and Te were obviously enriched in Apy-Ⅰ1. Loellingite was rich in As (64.06%-67.87%), Co (0.33%-4.98%), Ni (1.23%-6.37%). Trace elements such as Au, Te, Bi, Pb and Ag were more enriched in Lo-Ⅱ.

    CONCLUSIONS

    Lo-Ⅱ is the most important gold-bearing mineral. The changes of temperature and sulfur fugacity lead to the precipitation of loellingite and native gold. Native gold is precipitated by remobilization and migration of "invisible gold" in early arsenopyrite and loellingite.

  • 加载中
  • [1] Morey A A, Tomkins A G, Bierlein F P, et al. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn Craton, western Australia[J]. Economic Geology, 2008, 103: 599-614. doi: 10.2113/gsecongeo.103.3.599

    CrossRef Google Scholar

    [2] Zoheir B, Goldfarb R, Holzheid A, et al. Geochemical and geochronological characteristics of the Um Rus granite intrusion and associated gold deposit, Eastern Desert, Egypt[J]. Geoscience Frontiers, 2020, 11(1): 325-345. doi: 10.1016/j.gsf.2019.04.012

    CrossRef Google Scholar

    [3] Tomkins A G, Mavrogenes J A. Redistribution of gold within arsenopyrite and Lollingite during pro- and retrograde metamorphism: Application to timing of mineralization[J]. Economic Geology, 2001, 96: 525-534. doi: 10.2113/gsecongeo.96.3.525

    CrossRef Google Scholar

    [4] Deol S, Deb M, Large R R, et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia—Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization[J]. Chemical Geology, 2012, 326-327: 72-87. doi: 10.1016/j.chemgeo.2012.07.017

    CrossRef Google Scholar

    [5] 卢焕章, 朱笑青, 单强, 等. 金矿床中金与黄铁矿和毒砂的关系[J]. 矿床地质, 2013, 32(4): 824-843.

    Google Scholar

    Lu H Z, Zhu X Q, Shan Q, et al. Hydrothermal evolution of gold-bearing pyrite and arsenopyrite from different types of gold deposits[J]. Mineral Deposit, 2013, 32(4): 824-843.

    Google Scholar

    [6] 陈懋弘, 毛景文, 陈振宇, 等. 滇黔桂"金三角"卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J]. 矿床地质, 2009, 28(5): 539-557. doi: 10.3969/j.issn.0258-7106.2009.05.002

    CrossRef Google Scholar

    Chen M H, Mao J W, Chen Z Y, et al. Mineralogy of arsenian pyrites and arsenopyrites of Carlin-type gold deposits in Yunnan—Guizhou—Guangxi "golden triangle" area, southwestern China[J]. Mineral Deposit, 2009, 28(5): 539-557. doi: 10.3969/j.issn.0258-7106.2009.05.002

    CrossRef Google Scholar

    [7] 张乐骏, 周涛发. 矿物原位LA-ICPMS微量元素分析及其在矿床成因和预测研究中的应用进展[J]. 岩石学报, 2017, 33(11): 3437-3452.

    Google Scholar

    Zhang L J, Zhou T F. Minerals in-situ LA-ICPMS trace elements study and the applications in ore deposit genesis and exploration[J]. Acta Petrologica Sinica, 2017, 33(11): 3437-3452.

    Google Scholar

    [8] 周伶俐, 曾庆栋, 孙国涛, 等. LA-ICPMS原位微区面扫描分析技术及其矿床学应用实例[J]. 岩石学报, 2019, 35(7): 1964-1978.

    Google Scholar

    Zhou L L, Zeng Q D, Sun G T, et al. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) elemental mapping and its applications in ore geology[J]. Acta Petrologica Sinica, 2019, 35(7): 1964-1978.

    Google Scholar

    [9] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669.

    Google Scholar

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669.

    Google Scholar

    [10] 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496.

    Google Scholar

    Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 2018, 34(12): 3479-3496.

    Google Scholar

    [11] Zhang H D, Liu J C, Mostafa F. Multistage mineralization in the Haoyaoerhudong gold deposit, Central Asian Orogenic Belt: Constraints from the sedimentary-diagenetic and hydrothermal sulfides and gold[J]. Geoscience Frontiers, 2021, 12(2): 587-604. doi: 10.1016/j.gsf.2020.08.003

    CrossRef Google Scholar

    [12] 李园. 内蒙古浩尧尔忽洞金矿床黄铁矿成因矿物学研究及成矿预测[D]. 北京: 中国地质大学(北京), 2015.

    Google Scholar

    Li Y. The pyrite genetic mineralogy and metallogenic prediction of the Haoyaoerhudong gold deposit, Inner Mongolia Autonomous Region, China[D]. Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

    [13] 王建平, 刘家军, 江向东, 等. 内蒙古浩尧尔忽洞金矿床黑云母氩氩年龄及其地质意义[J]. 矿物学报, 2011, 31(S1): 643-644.

    Google Scholar

    Wang J P, Liu J J, Jiang X D, et al. The argon age and its geological significance of black mica of the Haoyaoerhudong gold deposit in Inner Mongolia[J]. Acta Mineralogica Sinica, 2011, 31(S1): 643-644.

    Google Scholar

    [14] Wang J P, Liu J J, Peng R M, et al. Gold mineralization in Proterozoic black shales: Example from the Haoyaoerhudong gold deposit, northern margin of the North China Craton[J]. Ore Geology Reviews, 2014, 63: 150-159. doi: 10.1016/j.oregeorev.2014.05.001

    CrossRef Google Scholar

    [15] 王得权, 王建国, 王义忠, 等. 内蒙浩尧尔忽洞金矿流体包裹体和矿床成因研究[J]. 地质力学学报, 2015, 21(4): 517-526. doi: 10.3969/j.issn.1006-6616.2015.04.007

    CrossRef Google Scholar

    Wang D Q, Wang J G, Wang Y Z, et al. Study on fluid inclusions and genetic type of Haoyaoerhudong gold deposit, Inner Mongolia[J]. Journal of Geomechanics, 2015, 21(4): 517-526. doi: 10.3969/j.issn.1006-6616.2015.04.007

    CrossRef Google Scholar

    [16] Zhang H D, Liu J C, Xu Q, et al. Geochronology, isotopic chemistry, and gold mineralization of the black slate-hosted Haoyaoerhudong gold deposit, northern North China Craton[J]. Ore Geology Reviews, 2020, 117: 103315. doi: 10.1016/j.oregeorev.2020.103315

    CrossRef Google Scholar

    [17] Wang J P, Wang X, Liu J J, et al. Geology, geochemistry, and geochronology of gabbro from the Haoyaoerhudong gold deposit, Northern Margin of the North China Craton[J]. Minerals, 2019, 9(1): 63. doi: 10.3390/min9010063

    CrossRef Google Scholar

    [18] 肖伟, 聂凤军, 刘翼飞, 等. 内蒙古长山壕金矿区花岗岩同位素年代学研究及地质意义[J]. 岩石学报, 2012, 28(2): 535-543.

    Google Scholar

    Xiao W, Nie F J, Liu Y F, et al. Isotope geochronology study of the granitoid intrusions in the Changshanhao gold deposit and its geological implications[J]. Acta Petrologica Sinica, 2012, 28(2): 535-543.

    Google Scholar

    [19] Liu Y F, Nie F J, Jiang S H, et al. Geology, geochrono-logy and sulphur isotope geochemistry of the black schist-hosted Haoyaoerhudong gold deposit of Inner Mongolia, China: Implications for ore genesis[J]. Ore Geology Reviews, 2016, 73: 253-269. doi: 10.1016/j.oregeorev.2014.12.020

    CrossRef Google Scholar

    [20] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [21] 宁思远, 汪方跃, 薛纬栋, 等. 长江中下游铜陵地区宝山岩体地球化学研究[J]. 地球化学, 2017, 46(5): 397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001

    CrossRef Google Scholar

    Ning S Y, Wang F Y, Xue W D, et al. Geochemistry of the Baoshan pluton in the Tongling region of the Lower Yangtze River Belt[J]. Geochimica, 2017, 46(5): 397-412. doi: 10.3969/j.issn.0379-1726.2017.05.001

    CrossRef Google Scholar

    [22] 汪方跃, 葛粲, 宁思远, 等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422-3436.

    Google Scholar

    Wang F Y, Ge C, Ning S Y, et al. A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 2017, 33(11): 3422-3436.

    Google Scholar

    [23] Xiao X, Zhou T F, White N C, et al. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, eastern China[J]. Lithos, 2018, 302-303: 467-479. doi: 10.1016/j.lithos.2018.01.023

    CrossRef Google Scholar

    [24] Sharp Z D, Essene E J, Kelly W C. A re-examination of the arsenopyrite geothermometer: Pressure considerations and applications to natural assemblages[J]. Canadian Mineralogist, 1985, 23: 517-534.

    Google Scholar

    [25] Thomas H V, Large R R, Bull S W, et al. Pyrite and pyrrhotite textures and composition in sedimentary rocks, laminated quartz veins, and gold reefs at the Bendigo mine, Australia: Insights for ore genesis[J]. Economic Geology, 2011, 106(1): 1-31. doi: 10.2113/econgeo.106.1.1

    CrossRef Google Scholar

    [26] Large R R, Danyushevsky L V, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits[J]. Economic Geology, 2009, 104: 635-668. doi: 10.2113/gsecongeo.104.5.635

    CrossRef Google Scholar

    [27] 李立兴, 李厚民, 丁建华, 等. 东天山维权银铜矿床中钴矿化发现及成因意义[J]. 矿床地质, 2018, 37(4): 778-796.

    Google Scholar

    Li L X, Li H M, Ding J H, et al. The discovery of cobaltite mineralization in Weiquan Ag-Cu deposit, eastern Tianshan Mountains, and its significance[J]. Mineral Deposit, 2018, 37(4): 778-796.

    Google Scholar

    [28] 张金阳, 马昌前, 李建威. 东昆仑水闸东沟—黄龙沟金矿床硫化物矿物学特征对可见金形成条件的制约[J]. 矿床地质, 2012, 31(6): 1184-1194. doi: 10.3969/j.issn.0258-7106.2012.06.005

    CrossRef Google Scholar

    Zhang J Y, Ma C Q, Li J W. Visible gold-forming environment evidenced by sulfide mineralogical characteristics of Shuizhadonggou—Huanglonggou gold deposit in eastern Kunlun Orogen[J]. Mineral Deposit, 2012, 31(6): 1184-1194. doi: 10.3969/j.issn.0258-7106.2012.06.005

    CrossRef Google Scholar

    [29] Sahoo P R, Venkatesh A S. Constraints of mineralogical characterization of gold ore: Implication for genesis, controls and evolution of gold from Kundarkocha gold deposit, eastern India[J]. Journal of Asian Earth Sciences, 2015, 97(Part A): 136-149.

    Google Scholar

    [30] 汪超, 王瑞廷, 刘云华, 等. 陕西商南三官庙金矿床地质特征、金的赋存状态及矿床成因探讨[J]. 矿床地质, 2021, 40(3): 491-508.

    Google Scholar

    Wang C, Wang R T, Liu Y H, et al. Geological characteristics, modes of occurrence of gold and genesis of San'guanmiao gold deposit, Shangnan, Shaanxi Province[J]. Mineral Deposit, 2021, 40(3): 491-508.

    Google Scholar

    [31] Large R R, Maslennikov V, Robert F, et al. Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log deposit, Lena Gold Province, Russia[J]. Economic Geology, 2007, 102: 1233-1267. doi: 10.2113/gsecongeo.102.7.1233

    CrossRef Google Scholar

    [32] Cook N J, Ciobanu L R, Meria D, et al. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements[J]. Economic Geology, 2013, 188(6): 1273-1283.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(2529) PDF downloads(99) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint