Citation: | TU Jiarun, LU Yiguan, SUN Kai, ZHOU Hongying, GUO Hu, CUI Yurong, GENG Jianzhen, LI Guozhan. Application of Microbeam Analytical Technology to Study the Occurrence of Cobalt from Copper-Cobalt Deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226-238. doi: 10.15898/j.cnki.11-2131/td.202112060194 |
Microbeam analytical technology can be used to accurately analyze the petrography, morphology, structure, component and isotopic composition of ore minerals on the micro-nano scale, which plays a vital role in supporting the detailed research of geoscience.
To provide a practical technology for visually and quickly identifying the cobalt-bearing minerals and to understand the occurrence of cobalt in the Chambishi copper-cobalt deposit.
Microscopy was combined with microbeam analytical technologies of micro-XRF, EPMA, LA-ICP-MS to develop a method for quickly identifying the cobalt-bearing minerals from copper-cobalt deposits. First, representative thin sections were selected by polarized light microscopy, micro-XRF map scanning was then used to obtain the distribution characteristics of cobalt and combined elements in the thin sections. The polarized light microscopy was used again to identify independent cobalt minerals and cobalt-bearing minerals based on the characteristics of element distribution. Finally, the representative minerals were circled and the main and trace elements were determined by EPMA and LA-ICP-MS.
The results showed that in the Chambishi Southeast orebody the cobalt not only existed in the form of independent minerals (pentlandite, linnaeite, carrollite), but also occurred in pyrite and pyrrhotite in the form of isomorphism, while the cobalt in the Chambishi West orebody mainly existed in the form of independent mineral—carrollite with a small amount.
The combined microbeam analysis method is proposed to quickly and easily identify cobalt-bearing minerals and to study the occurrence of cobalt in the Chambishi Southeast orebody and Chambishi West orebody. It can effectively save the time of identifying minerals by traditional polarized light microscopy and avoid missing identification of some independent cobalt minerals or cobalt-bearing minerals with small particle size or without obvious optical characteristics.
[1] | 卢宜冠, 郝波, 孙凯, 等. 钴金属资源概况与资源利用情况分析[J]. 地质调查与研究, 2020, 43(1): 74-82. Lu Y G, Hao B, Sun K, et al. General situation of cobalt resource and its utilization analysis[J]. Geological Survey and Research, 2020, 43(1): 74-82. |
[2] | 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106-111. |
[3] | Schulz K J, DeYoung J H, Seal R R, et al. Critical min-eral resources of the United States—Economic and environmental geology and prospects for future supply[R]. U.S. Geological Survey, 2017. |
[4] | 王辉, 丰成友, 张明玉. 全球钴矿资源特征及勘查研究进展[J]. 矿床地质, 2019, 38(4): 739-750. Wang H, Feng C Y, Zhang M Y. Characteristics and exploration and research progress of global cobalt deposits[J]. Mineral Deposits, 2019, 38(4): 739-750. |
[5] | 王登红. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向[J]. 地质学报, 2019, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003 Wang D H. Study on critical mineral resources: Significance of research, determination of types, attributes of resources, progress of prospecting, problems of utilization, and direction of exploitation[J]. Acta Geologica Sinica, 2019, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003 |
[6] | Rundnick R L, Gao S. Composition of the continental crust[J]. Treatise on Geochemistry, 2003, 3: 1-64. |
[7] | 赵俊兴, 李光明, 秦克章, 等. 富含钴矿床研究进展与问题分析[J]. 科学通报, 2019, 64(24): 28-44. Zhao J X, Li G M, Qin K Z, et al. A review of the types and ore mechanism of the cobalt deposits[J]. Chinese Science Bulletin, 2019, 64(24): 28-44. |
[8] | 刘超, 陈甲斌. 全球钴资源供需形势分析[J]. 国土资源情报, 2020(10): 29-35. Liu C, Chen J B. Analysis of supply and demand situation of global cobalt resources[J]. Land and Resources Information, 2020(10): 29-35. |
[9] | Muchez P, Vanderhaeghen P, Desouky H E, et al. Anhyd-rite pseudomorphs and the origin of stratiform Cu-Co ores in the Katangan copper belt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2008, 43(5): 575-589. doi: 10.1007/s00126-008-0183-5 |
[10] | Desouky H A E, Muchez P, Boyce A J, et al. Genesis of sediment-hosted stratiform copper-cobalt minerali-zation at Luiswishi and Kamoto, Katanga copper belt(Democratic Republic of Congo)[J]. Mineralium Deposita, 2010, 45(8): 735-763. doi: 10.1007/s00126-010-0298-3 |
[11] | 阎磊, 范裕, 刘一男. 安徽庐枞盆地龙桥铁矿床中钴的赋存状态和空间分布规律[J]. 岩石学报, 2021, 37(9): 2778-2790. Yan L, Fan Y, Liu Y N. The occurrence and spatial distribution of cobalt in Longqiao iron deposit in Luzong Basin, Anhui Province[J]. Acta Petrologica Sinica, 2021, 37(9): 2778-2790. |
[12] | Fleischer V D. Discovery, geology and genesis of copper-cobalt mineralisation at Chambishi Southeast prospect, Zambia[J]. Precambrian Research, 1984, 25(1-3): 119-133. doi: 10.1016/0301-9268(84)90027-5 |
[13] | 卢宜冠, 涂家润, 孙凯, 等. 中非赞比亚成矿带谦比希铜钴矿床钴的赋存状态与成矿规律[J]. 地学前缘, 2021, 28(3): 338-354. Lu Y G, Tu J R, Sun K, et al. Cobalt occurrence and ore-forming process in the Chambishi deposit in the Zambian copper belt, central Africa[J]. Earth Science Frontiers, 2021, 28(3): 338-354. |
[14] | 徐昭啟. 云南永平县水泄—厂街铜钴矿铜钴的赋存状态与选矿工艺学[J]. 云南冶金, 2012, 41(3): 5-9. doi: 10.3969/j.issn.1006-0308.2012.03.002 Xu Z Q. Research on the occurrence of Cu & Co and process mineralogy of copper-cobalt ore of Shuixie—Changjie copper-cobalt mine in Yongping County, Yunnan[J]. Yunnan Metallurgy, 2012, 41(3): 5-9. doi: 10.3969/j.issn.1006-0308.2012.03.002 |
[15] | 刘东盛, 王学求, 聂兰仕, 等. 中国钴地球化学异常特征、成因及找矿远景区预测[J/OL]. 地球科学, 2021, https://kns.cnki.net/kcms/detail/42.1874.P.20210830.1411.012.html. Liu D S, Wang X Q, Nie L S, et al. Cobalt geochemical anomalies characteristics and genesis in China and metallogenic prospecting areas prediction[J/OL]. Earth Science, 2021, https://kns.cnki.net/kcms/detail/42.1874.P.20210830.1411.012.html. |
[16] | 陈彪, 戚长谋. 钴的赋存状态及其在找矿和资源评估中的意义[J]. 长春科技大学学报, 2001, 31(3): 217-218. doi: 10.3969/j.issn.1671-5888.2001.03.003 Chen B, Qi C M. The occurrence state of cobalt and its significance in prospecting and resource assessment[J]. Journal of Changchun University of Science and Technology, 2001, 31(3): 217-218. doi: 10.3969/j.issn.1671-5888.2001.03.003 |
[17] | 王焰, 钟宏, 曹勇华, 等. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825-3838. Wang Y, Zhong H, Cao Y H, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825-3838. |
[18] | 李向前, 闫艳玲, 徐宪立. 刚果(金)加丹加省堪苏祁铜钴矿床铜钴矿物赋存状态研究[J]. 矿产与地质, 2009, 23(3): 253-257. doi: 10.3969/j.issn.1001-5663.2009.03.012 Li X Q, Yan Y L, Xu X L. Occurrence of Cu-Co minerals of the Kansuki copper-cobalt deposit in the Katanga Province, D.R. Congo[J]. Mineral Resources and Geology, 2009, 23(3): 253-257. doi: 10.3969/j.issn.1001-5663.2009.03.012 |
[19] | 李宝庆, 庄新国, 赵仕华. 新疆煤中钴的分布、赋存特征及成因分析[J]. 岩石矿物学杂志, 2014, 33(3): 574-580. doi: 10.3969/j.issn.1000-6524.2014.03.015 Li B Q, Zhuang X G, Zhao S H. The distribution, modes of occurrence and genesis of cobalt in coals of Xinjiang[J]. Acta Petrologica et Mineralogica, 2014, 33(3): 574-580. doi: 10.3969/j.issn.1000-6524.2014.03.015 |
[20] | 陈意, 胡兆初, 贾丽辉, 等. 微束分析测试技术十年(2011—2020)进展与展望[J]. 矿物岩石地球化学通报, 2021, 40(1): 1-35. Chen Y, Hu Z C, Jia L H, et al. Progress of microbeam analytical technologies in the past decade (2011—2020) and prospect[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 1-35. |
[21] | 戴婕, 徐金沙, 潘晓东, 等. 微束分析技术在研究伴生金元素赋存状态中的应用[J]. 岩矿测试, 2011, 30(6): 655-663. doi: 10.3969/j.issn.0254-5357.2011.06.002 Dai J, Xu J S, Pan X D, et al. The application of the microbeam analysis technique in associated gold and its occurrence state[J]. Rock and Mineral Analysis, 2011, 30(6): 655-663. doi: 10.3969/j.issn.0254-5357.2011.06.002 |
[22] | 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. |
[23] | 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679. Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679. |
[24] | Wirth R. Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chemical Geology, 2009, 261(3-4): 217-229. doi: 10.1016/j.chemgeo.2008.05.019 |
[25] | 王冠, 戴婕, 王坤阳, 等. 应用能谱-扫描电镜分析铜矿床伴生元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 659-669. Wang G, Dai J, Wang K Y, et al. Occurrence of associated elements in a copper mine by EDX-SEM[J]. Rock and Mineral Analysis, 2021, 40(5): 659-669. |
[26] | Deol S, Deb M, Large R R, et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia—Jagpura gold prospect, southern Rajasthan, India: Implications for ore genesis and gold remobilization[J]. Chemical Geology, 2012, 326-327: 72-87. doi: 10.1016/j.chemgeo.2012.07.017 |
[27] | 范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. Fan H R, Li X H, Zuo Y B, et al. In-situ LA-(MC)-ICPMS and (nano)SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit[J]. Acta Petrologica Sinica, 2018, 34(12): 3479-3496. |
[28] | 刘武生, 赵如意, 张熊, 等. 粤北大宝山铜多金属矿区黄铁矿与磁黄铁矿EPMA和LA-ICP-MS原位微区组分特征及其对矿床成因机制约束[J]. 地球学报, 2019, 40(2): 291-306. Liu W S, Zhao R Y, Zhang X, et al. The EPMA and LA-ICP-MS in-situ geochemical features of pyrrhotite and pyrite in Dabaoshan Cu-polymetallic deposit, North Guangdong Province, and their constraint on genetic mechanism[J]. Acta Geoscientica Sinica, 2019, 40(2): 291-306. |
[29] | 郭东旭, 刘晓, 张海兰, 等. 基于红外光谱技术研究云南普朗斑岩铜矿的蚀变和矿化特征[J]. 岩矿测试, 2021, 40(5): 698-709. Guo D X, Liu X, Zhang H L, et al. The infrared spectroscopy characteristics of alteration and mineralization in the porphyry copper deposit in Pulang, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(5): 698-709. |
[30] | Gholap D S, Izmer A, Samber B D, et al. Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging in Daphnia Magna[J]. Analytica Chimica Acta, 2010, 664(1): 19-26. doi: 10.1016/j.aca.2010.01.052 |
[31] | 沈亚婷, 罗立强. 现代实验室型X射线荧光元素分布成像和形态分析技术的研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 686-695. Shen Y T, Luo L Q. A review of the development of modern laboratory X-ray fluorescence element distribution imaging and species analysis technology[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 686-695. |
[32] | 梁述廷, 刘玉纯, 刘瑱, 等. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用[J]. 岩矿测试, 2015, 34(2): 201-206. Liang S T, Liu Y C, Liu Z, et al. Application of in-situ micro-XRF spectrometry in the identification of copper minerals[J]. Rock and Mineral Analysis, 2015, 34(2): 201-206. |
[33] | 罗立强, 沈亚婷, 马艳红, 等. 微区X射线荧光光谱仪研制及元素生物地球化学动态分布过程研究[J]. 光谱学与光谱分析, 2017, 37(4): 1003-1008. Luo L Q, Shen Y T, Ma Y H, et al. Development of laboratory microscopic X-ray fluorescence spectrometer and the study on spatial distribution of elements in biofilms and maize seeds[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1003-1008. |
[34] | 张一帆, 范裕, 陈静, 等. 矿精粉中关键金属元素赋存状态研究方法流程的建立: 以长江中下游成矿带富钴硫矿精粉为例[J]. 岩石学报, 2021, 37(9): 2791-2804. Zhang Y F, Fan Y, Chen J, et al. Establishment of a research workflow for occurrence state of critical metal in ore concentrate powder: A case study of the cobalt-rich sulfur ore concentrate powder from the Middle—Lower Yangtze River Valley metallogenic belt, China[J]. Acta Petrologica Sinica, 2021, 37(9): 2791-2804. |
[35] | 卢宜冠, 孙凯, 覃鹏, 等. 赞比亚铜带省谦比希盆地含矿地层地球化学特征、物源属性及其成矿地质背景研究[J]. 地质学报, 2021, 95(4): 1082-1099. doi: 10.3969/j.issn.0001-5717.2021.04.010 Lu Y G, Sun K, Qin P, et al. Geochemical charact-eristics, nature of provenance and metallogenic geological settings of the ore-bearing strata in the Chambishi Basin, Copper Belt Province, Zambia[J]. Acta Geologica Sinica, 2021, 95(4): 1082-1099. doi: 10.3969/j.issn.0001-5717.2021.04.010 |
[36] | 左立波, 任军平, 王杰, 等. 赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J]. 地质调查与研究, 2020, 43(1): 30-41. doi: 10.3969/j.issn.1672-4135.2020.01.004 Zuo L B, Ren J P, Wang J, et al. Geochemical characteristics, zircon U-Pb ages and Lu-Hf isotopic composition of granites in Bangweulu Block, Zambia[J]. Geological Survey and Research, 2020, 43(1): 30-41. doi: 10.3969/j.issn.1672-4135.2020.01.004 |
Schematic diagram of cobalt occurrence state analysis by microbeam technology
Major elemental maps by micro-XRF and the corresponding photomicrographs of sample QBXDN-13b from Chambishi Southeast orebody (Pld—pentlandite; Po—pyrrhotite; Py—pyrite; Ccp—chalcopyrite; Sph—sphalerite)
Co element map by micro-XRF and the corresponding photomicrograph of sample QBXDN-13b from Chambishi Southeast orebody (Pld—pentlandite; Po—pyrrhotite; Py—pyrite; Ccp—chalcopyrite)
Combination elements map of Co-Fe-Cu by micro-XRF and the corresponding photomicrographs of sample QBXDN-19a from Chambishi Southeast orebody (Lit—linnaeite; Pld—pentlandite; Po—pyrrhotite; Ccp—chalcopyrite)
Combination element maps of Co-Fe-Cu by micro-XRF and the corresponding photomicrographs of sample QBXX-1 from Chambishi West orebody (Car—carrollite; Ccp—chalcopyrite; Bn—bornite)
Combination elements map of Co-Fe-Cu by micro-XRF and the corresponding photomicrographs of sample QBXDN-13a from Chambishi Southeast orebody (Pld—pentlandite; Car—carrollite; Po—pyrrhotite; Py—pyrite; Ccp—chalcopyrite; Sph—sphalerite)
Combination elements map of Co-Fe-Cu by micro-XRF and the corresponding photomicrographs of sample QBXX-7 from Chambishi West orebody (Car—carrollite; Ccp—chalcopyrite; Bn—bornite)
Fe-Co output signals of the Co-bearing minerals in Chambishi West orebody by LA-ICP-MS.