Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 2
Article Contents

YANG Bo, YANG Li, MENG Wenxiang. Application of Electron Probe Microanalyzer in Exploring the Occurrence Characteristics of Scandium in Different Minerals of the Bayan Obo Deposit[J]. Rock and Mineral Analysis, 2022, 41(2): 185-198. doi: 10.15898/j.cnki.11-2131/td.202110140150
Citation: YANG Bo, YANG Li, MENG Wenxiang. Application of Electron Probe Microanalyzer in Exploring the Occurrence Characteristics of Scandium in Different Minerals of the Bayan Obo Deposit[J]. Rock and Mineral Analysis, 2022, 41(2): 185-198. doi: 10.15898/j.cnki.11-2131/td.202110140150

Application of Electron Probe Microanalyzer in Exploring the Occurrence Characteristics of Scandium in Different Minerals of the Bayan Obo Deposit

  • BACKGROUND

    With the increasing demand for scandium resources, countries around the world have carried out scandium metallogenic mechanism research and prospecting in recent years. One of the key research contents is to clarify the occurrence characteristics of scandium. According to previous studies, scandium mainly exists in the form of isomorphism and ion adsorption in various scandium deposits. At present, more than 800 kinds of scandium-bearing minerals have been found. The scandium resource of the Bayan Obo deposit is large, which has the characteristics of dispersed distribution and low content. Scandium enters other minerals in the form of isomorphism and no independent scandium mineral is found. Due to the limitation of testing technology and sampling, there is no accurate quantitative research to systematically explore the occurrence characteristics of scandium in different minerals in the Bayan Obo deposit. Therefore, the identification of the main scandium-bearing minerals is insufficient, which is not conducive to further exploration of the enrichment mechanism of scandium and the utilization of scandium resources in the deposit.

    OBJECTIVES

    To understand the occurrence of Sc in different minerals of the Bayan Obo deposit.

    METHODS

    34 kinds of minerals in the Bayan Obo deposit were systematically determined by electron probe microanalyzer (EPMA) technology.

    RESULTS

    The test results showed that the average scandium content (Sc2O3) in 6 minerals was more than 0.100%. They were samarskite (with average Sc2O3 content of 2.485%), columbite (1.263%), manganocolumbite (0.251%), dark purple fluorite (0.181%), thorianite (0.145%) and Y-rich aeschynite (0.124%) from high to low. Samarskite had the highest scandium content (3.093%). The content of scandium in 16 minerals ranged from 0.004% to 0.067%, which were fergusonite (with average Sc2O3 content of 0.067%), alkaline amphibole (0.062%), ferrothorite (0.060%), pyrochlore (0.049%), fersmite (0.031%), bastnaesite (0.028%), apatite (0.028%), britholite (0.025%), monazite (0.023%), aegirine (0.02%), biotite (0.019%), humite (0.011%), fergusonite-(Ce) (0.008%), feldspar (0.007%), magnetite (0.005%), albite (0.004%). Scandium was not detected in the other 12 minerals.

    CONCLUSIONS

    Samarskite has the highest scandium content in the deposit, and the 6 main scandium-bearing minerals are samarskite, columbite, manganocolumbite, dark purple fluorite, thorianite and Y-rich aeschynite. Among the 34 minerals, the content of scandium in 22 minerals is higher than the detection limit of EPMA, and scandium is distributed in a dilute manner. The occurrence of scandium is related to titanium, yttrium and thorium, and the correlation coefficients are 0.869, 0.835 and 0.720, respectively. Scandium is closely related to niobium minerals such as columbite, manganocolumbite, fersmite and Y-rich aeschynite. It can be considered to comprehensively utilize scandium and niobium resources at the same time.

  • 加载中
  • [1] 朱凯, 王祝堂. 钪的研究进展及其在铝合金中的应用[J]. 轻合金加工技术, 2021, 49(2): 1-10.

    Google Scholar

    Zhu K, Wang Z T. Research progress of Sc and its application in aluminum alloys[J]. Light Alloy Fabrication Technology, 2021, 49(2): 1-10.

    Google Scholar

    [2] 李力, 姜锋, 李汉广. 新世纪钪的应用开发和科技发展前景[J]. 稀有金属与硬质合金, 2002(3): 38-41. doi: 10.3969/j.issn.1004-0536.2002.03.011

    CrossRef Google Scholar

    Li L, Jiang F, Li H G. The trend of application and development of scandium in the new century[J]. Rare Metals and Cemented Carbides, 2002(3): 38-41. doi: 10.3969/j.issn.1004-0536.2002.03.011

    CrossRef Google Scholar

    [3] 董方, 高利坤, 陈龙, 等. 钪的资源及回收提取技术发展现状[J]. 矿产综合利用, 2016(4): 21-26. doi: 10.3969/j.issn.1000-6532.2016.04.005

    CrossRef Google Scholar

    Dong F, Gao L K, Chen L, et al. Scandium resources and status of scandium extraction and recycling technology[J]. Multipurpose Utilization of Mineral Resources, 2016(4): 21-26. doi: 10.3969/j.issn.1000-6532.2016.04.005

    CrossRef Google Scholar

    [4] 赵宏军, 陈秀法, 李娜, 等. 全球钪资源供需分析及对策建议[J]. 中国矿业, 2019, 28(4): 57-62.

    Google Scholar

    Zhao H J, Chen X F, Li N, et al. Analysis of global distribution of scandium resources supply and demand status and suggestions[J]. China Mining Magazine, 2019, 28(4): 57-62.

    Google Scholar

    [5] Giovanni M, Roberto B, Erwan G, et al. Geochemistry of the apulian allochthonous karst bauxite, southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri—Tethyan palaeogeography[J]. Ore Geology Reviews, 2016, 77: 246-259. doi: 10.1016/j.oregeorev.2016.03.002

    CrossRef Google Scholar

    [6] Rudnick R L, Gao S. Composition of the continental crust, in Turekian and Holland[M]. Oxford: Elsevier, 2014: 1-51.

    Google Scholar

    [7] Williams-Jones A E, Vasyukova O V. The economic geology of scandium, the runt of the rare earth element litter[J]. Economic Geology, 2018, 113(4): 973-988. doi: 10.5382/econgeo.2018.4579

    CrossRef Google Scholar

    [8] 陶旭云, 王佳新, 孙嘉, 等. 钪矿床主要类型与成矿机制[J]. 矿床地质, 2019, 38(5): 1023-1038.

    Google Scholar

    Tao X Y, Wang J X, Sun J, et al. Main types and metallogenic mechanism of scandium deposits[J]. Mineral Deposits, 2019, 38(5): 1023-1038.

    Google Scholar

    [9] Wang Z C, Li M Y L, Liu Z R, et al. Scandium: Ore deposits, the pivotal role of magmatic enrichment and future exploration[J]. Ore Geology Reviews, 2021, 128: 103906. doi: 10.1016/j.oregeorev.2020.103906

    CrossRef Google Scholar

    [10] 王佳媛, 郭静粉, 袁志宝. 各类钪矿床中钪的赋存特征与研究前景[J]. 中国资源综合利用, 2019, 37(6): 71-73. doi: 10.3969/j.issn.1008-9500.2019.06.023

    CrossRef Google Scholar

    Wang J Y, Guo J F, Yuan Z B. Occurrence characteristics and research prospects of scandium invarious types of scandium deposits[J]. China Resources Comprehensive Utilization, 2019, 37(6): 71-73. doi: 10.3969/j.issn.1008-9500.2019.06.023

    CrossRef Google Scholar

    [11] 肖军辉, 王进明, 王振. 川西含钪稀土矿中钪的赋存状态研究[J]. 稀土, 2018, 39(2): 40-47.

    Google Scholar

    Xiao J H, Wang J M, Wang Z. Study on occurrence state of scandium of scandium-containing rare earth ore in western of Sichuan Province[J]. Chinese Rare Earths, 2018, 39(2): 40-47.

    Google Scholar

    [12] 郭彩莲, 成来顺, 宁新霞, 等. 陕西省洋县毕机沟钒钛磁铁矿中钪的赋存状态研究[J]. 矿产保护与利用, 2020, 40(5): 54-61.

    Google Scholar

    Guo C L, Cheng L S, Ning X X, et al. Study on the occurence state of scandium in Bijigou vanadium-titanium magnetite in Yang County, Shaanxi Province[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 54-61.

    Google Scholar

    [13] 李春龙, 李小钢, 徐广尧. 白云鄂博共伴生矿资源综合利用技术开发与产业化[J]. 稀土, 2015, 36(5): 151-158.

    Google Scholar

    Li C L, Li X G, Xu G Y. Technology development and industrialization of resources comprehensive utilization of intergrowth and associated ore in Baiyun Obo[J]. Chinese Rare Earths, 2015, 36(5): 151-158.

    Google Scholar

    [14] 刘璞, 卢虎生, 王路, 等. 稀土资源投资决策研究——以白云鄂博氧化钪为例[J]. 稀土, 2021, 42(4): 148-158.

    Google Scholar

    Liu P, Lu H S, Wang L. Research on investment decisions of rare earth resources-taking scandium oxide of Bayan Obo mine as an example[J]. Chinese Rare Earths, 2021, 42(4): 148-158.

    Google Scholar

    [15] Li B W, Deng L B, Zhang X F, et al. Structure and perfor-mance of glass-ceramics obtained by Bayan Obo tailing and fly ash[J]. Journal of Non-Crystalline Solids, 2013, 380: 103-108.

    Google Scholar

    [16] 梁有彬. 白云鄂博矿床中钪的分布特征及综合利用问题[J]. 稀土, 1986, 7(6): 54-56.

    Google Scholar

    Liang Y B. Distribution characteristics and compre-hensive utilization of scandium in Bayan Obo deposit[J]. Chinese Rare Earths, 1986, 7(6): 54-56.

    Google Scholar

    [17] 赵长有. 白云鄂博钪[J]. 包钢科技, 1987(4): 1-4.

    Google Scholar

    Zhao C Y. Scandium in Bayan Obo[J]. Science & Technology of Baotou Steel, 1987(4): 1-4.

    Google Scholar

    [18] 中国科学院地球化学研究所. 白云鄂博矿床地球化学[M]. 北京: 科学出版社, 1988: 316-320.

    Google Scholar

    Institute of Geochemistry, Chinese Academy of Sciences. Geochemistry of Bayan Obo deposit[M]. Beijing: Science Press, 1988: 316-320.

    Google Scholar

    [19] Shimazaki H, Yang Z M, Miyawaki R, et al. Scandium-bearing minerals in the Bayan Obo Nb-REE-Fe deposit, Inner Mongolia, China[J]. Resource Geology, 2008, 58(1): 80-86.

    Google Scholar

    [20] 张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261-274.

    Google Scholar

    Zhang D, Chen Y, Mao Q, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261-274.

    Google Scholar

    [21] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669.

    Google Scholar

    Li C, Wang D H, Qu W J, et al. A review perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669.

    Google Scholar

    [22] 王芳, 朱丹, 鲁力, 等. 应用电子探针分析技术研究某铌-稀土矿中铌和稀土元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 670-679.

    Google Scholar

    Wang F, Zhu D, Lu L, et al. Occurrence of niobium and rare earth elements in related ores by electron microprobe[J]. Rock and Mineral Analysis, 2021, 40(5): 670-679.

    Google Scholar

    [23] 李小犁, 陶仁彪, 李清云, 等. 石榴子石Fe3+含量电子探针原位分析: Flank Method方法的实例应用[J]. 岩石学报, 2019, 35(4): 1058-1070.

    Google Scholar

    Li X L, Tao R B, Li Q Y, et al. Microprobe analysis of ferric iron in garnet: The Flank Method and case application[J]. Acta Petrologica Sinica, 2019, 35(4): 1058-1070.

    Google Scholar

    [24] 万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145-155.

    Google Scholar

    Wan J J, Pan C R, Yan J, et al. EPMA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145-155.

    Google Scholar

    [25] 章雨旭, 吕洪波, 王俊, 等. 白云鄂博矿床成矿构造环境分析[J]. 地质学报, 2012, 86(5): 767-774.

    Google Scholar

    Zhang Y X, Lyu H B, Wang J, et al. Analysis of ore-forming tectonic settings of the Bayan Obo REE deposit[J]. Acta Geologica Sinica, 2012, 86(5): 764-774.

    Google Scholar

    [26] Smith M P, Campbell L S, Kynicky J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions[J]. Ore Geology Reviews, 2015, 64: 459-476.

    Google Scholar

    [27] 柯昌辉, 孙盛, 赵永岗, 等. 内蒙古白云鄂博超大型稀土-铌-铁矿床控矿构造特征及深部找矿方向[J]. 地质通报, 2021, 40(1): 95-109.

    Google Scholar

    Ke C H, Sun S, Zhao Y G, et al. Ore-controlling structure and deep prospecting of the Bayan Obo large-saized REE-Nb-Fe ore deposit, Inner Mongolia[J]. Geological Bulletin of China, 2021, 40(1): 95-109.

    Google Scholar

    [28] Zhai M G, Santosh M, Zhang L. Precambrian geology and tectonic evolution of the North China Craton[J]. Gondwana Research, 2011, 20(1): 1-5.

    Google Scholar

    [29] 谢玉玲, 曲云伟, 杨占峰, 等. 白云鄂博铁、铌、稀土矿床: 研究进展、存在问题和新认识[J]. 矿床地质, 2019, 38(5): 983-1003.

    Google Scholar

    Xie Y L, Qu Y W, Yang Z F, et al. Giant Bayan Obo Fe-Nb-REE deposit: Progresses, controversaries and new understandings[J]. Mineral Deposits, 2019, 38(5): 983-1003.

    Google Scholar

    [30] 刘敬国, 柳建勇. 论白云鄂博铁矿资源潜力与今后地质工作方向[J]. 包钢科技, 2007(4): 9-14.

    Google Scholar

    Liu J G, Liu J Y. Discussion on the resources potential of Baiyunebo iron mine and the future work direction[J]. Science & Technology of Baotou Steel, 2007(4): 9-14.

    Google Scholar

    [31] 王凯怡, 张继恩, 方爱民, 等. 白云鄂博矿床成因——矿体内霓长岩化成矿作用与赋矿白云岩的联系[J]. 岩石学报, 2018, 34(3): 785-798.

    Google Scholar

    Wang K Y, Zhang J E, Fang A M, et al. Genesis of the Bayan Obo deposit, Inner Mongolia: The fenitized mineralization in the ore bodies and its relation to the ore-bearing dolomite[J]. Acta Petrologica Sinica, 2018, 34(3): 785-798.

    Google Scholar

    [32] 张培善, 陶克捷. 白云鄂博矿物学[M]. 北京: 科学出版社, 1986: 3-37.

    Google Scholar

    Zhang P S, Tao K J. Mineralogy of Bayan Obo[M]. Beijing: Geological Publishing House, 1986: 3-37.

    Google Scholar

    [33] 张培善, 陶克捷, 杨主明, 等. 中国稀土矿物学[M]. 北京: 科学出版社, 1998: 1-19.

    Google Scholar

    Zhang P S, Tao K J, Yang Z M, et al. Rare earth mineralogy in China[M]. Beijing: Science Press, 1998: 1-19.

    Google Scholar

    [34] 徐金沙, 李国武, 沈敢富. 首次在白云鄂博铁矿发现的矿物种述评[J]. 地质学报, 2012, 86(5): 842-848.

    Google Scholar

    Xu J S, Li G W, Shen G F. Commentary on mineral species first found in the Bayan Obo iron mine[J]. Acta Geologica Sinica, 2012, 186(5): 842-848.

    Google Scholar

    [35] 段威, 唐文春, 熊观, 等. 川北硅质岩型铼多金属矿铼的赋存状态[J]. 矿物学报, 2021, 41(3): 271-276.

    Google Scholar

    Duan W, Tang W C, Xiong G, et al. A study on the occurrence of rhenium in the siliceous rock-type Re polymetallic deposit in the northern Sichuan, China[J]. Acta Mineralogica Sinica, 2021, 41(3): 271-276.

    Google Scholar

    [36] 曾广圣, 欧乐明. X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征[J]. 岩矿测试, 2019, 38(2): 160-168.

    Google Scholar

    Zeng G S, Ou L M. Study on mineralogical characteristics of Peru copper-sulphur ore dressing process by X-ray diffraction and scanning electron microscope[J]. Rock and Mineral Analysis, 2019, 38(2): 160-168.

    Google Scholar

    [37] 李东育. 红格钒钛磁铁矿中钪的地球化学特征——兼论选矿流程中钪的分布[D]. 成都: 成都理工大学, 2017: 1-5.

    Google Scholar

    Li D Y. Geochemical characteristics of scandium in Hongge vanadium titanium magnetite-distribution of scandium in beneficiation progress[D]. Chengdu: Chengdu University of Technology, 2017: 1-5.

    Google Scholar

    [38] 李军敏, 丁俊, 尹福光, 等. 渝南申基坪铝土矿矿区钪的分布规律及地球化学特征研究[J]. 沉积学报, 2012, 30(5): 909-918.

    Google Scholar

    Li J M, Ding J, Yin F G, et al. Regularities of distribution and geochemical characteristics of Sc in bauxite of Shenjiping mine, southern Chongqing[J]. Acta Sedimentologica Sinica, 2012, 30(5): 909-918.

    Google Scholar

    [39] 惠博, 陈晓青, 赵开乐, 等. 某斑岩型铜矿中Sc的赋存状态及对选矿工艺的影响[J]. 矿物学报, 2016, 36(3): 423-428.

    Google Scholar

    Hui B, Chen X Q, Zhao K L, et al. A study on occurrence state of scandium in a porphyry copper ore and its influence on the mineral processing technology[J]. Acta Mineralogica Sinica, 2016, 36(3): 423-428.

    Google Scholar

    [40] 范亚洲, 周伟, 王子玺, 等. 稀散元素Sc的矿床类型及找矿前景[J]. 西北地质, 2014, 47(1): 234-243.

    Google Scholar

    Fan Y Z, Zhou W, Wang Z X, et al. The types of rare and disperse scandium deposits and prospecting potential[J]. Northwestern Geology, 2014, 47(1): 234-243.

    Google Scholar

    [41] 许延辉. 包头白云鄂博资源中铌、钪提取技术取得突破[J]. 稀土信息, 2012(3): 29.

    Google Scholar

    Xu Y H. Breakthrough in extraction technology of niobium and scandium from Bayan Obo resources in Baotou[J]. Rare Earth Information, 2012(3): 29.

    Google Scholar

    [42] 赵昉, 胡振琪, 车丽萍. 乳状液膜法提取白云鄂博矿床中钪的试验研究[J]. 稀土, 2010, 31(2): 89-92.

    Google Scholar

    Zhao F, Hu Z Q, Che L P. Extracting Sc3+ using liquid membrane emulsion technology[J]. Chinese Rare Earths, 2010, 31(2): 89-92.

    Google Scholar

    [43] 马媛. 萤石标型及其对不同成矿作用的标识[D]. 北京: 中国地质大学(北京), 2018: 1-9.

    Google Scholar

    Ma Y. Typomorphic characteristics of the fluorite as indicators of different mineralizations[D]. Beijing: China University of Geosciences (Beijing), 2018: 1-9.

    Google Scholar

    [44] 杨育富. 湖南香花岭矽卡岩中不同颜色萤石的特征及成因[D]. 桂林: 桂林理工大学, 2019: 15-16.

    Google Scholar

    Yang Y F. Characteristics and origin of the fluorite with different colors in Xiangkaling skarn, Hunan[D]. Guiling: Guilin University of Technology, 2019: 15-16.

    Google Scholar

    [45] 于俊芳. 白云鄂博含萤石矿石类型及萤石纯净度分析[D]. 北京: 中国地质大学(北京), 2020: 1-4, 29-44.

    Google Scholar

    Yu J F. Different ore types and analysis of fluorite purity in Bayan Obo[D]. Beijing: China University of Geosciences (Beijing), 2020: 1-4, 29-44.

    Google Scholar

    [46] 刘铁庚, 赵云龙, 李新安. 辐射损伤与萤石颜色的初步研究[J]. 矿物学报, 1983(4): 300-303, 326.

    Google Scholar

    Liu T G, Zhao Y L, Li X A. Preliminary study of the relationship between irradiation damage and fluorite colour[J]. Acta Mineralogica Sinica, 1983(4): 300-303, 326.

    Google Scholar

    [47] 李丹煜, 杨莉, 王金龙, 等. 白云鄂博萤石分布特征及放射性钍元素的影响[J]. 包钢科技, 2020, 46(3): 6-9.

    Google Scholar

    Li D Y, Yang L, Wang J L, et al. Distribution characteristics of fluorite and effects of radioactive element thorium in Bayan Obo deposit[J]. Science & Technology of Baotou Steel, 2020, 46(3): 6-9.

    Google Scholar

    [48] 杨莉, 王昭静, 杨波, 等. 白云鄂博矿床钍的赋存状态及其对周边矿物的影响[J]. 稀土, 2021, 42(4): 52-62.

    Google Scholar

    Yang L, Wang Z J, Yang B, et al. Occurrence state of thorium and its influence on surrounding minerals in Bayan Obo deposit[J]. Chinese Rare Earths, 2021, 42(4): 52-62.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(3104) PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint