Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 2
Article Contents

ZHANG Long, CHEN Zhenyu, WANG Fangyue, ZHOU Taofa. Application of Electron Probe Microanalyzer to Study the Textures and Compositions of Alteration Coronas of Monazite from the Longhuashan Granite, Northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174-184. doi: 10.15898/j.cnki.11-2131/td.202109070118
Citation: ZHANG Long, CHEN Zhenyu, WANG Fangyue, ZHOU Taofa. Application of Electron Probe Microanalyzer to Study the Textures and Compositions of Alteration Coronas of Monazite from the Longhuashan Granite, Northern Guangdong Province[J]. Rock and Mineral Analysis, 2022, 41(2): 174-184. doi: 10.15898/j.cnki.11-2131/td.202109070118

Application of Electron Probe Microanalyzer to Study the Textures and Compositions of Alteration Coronas of Monazite from the Longhuashan Granite, Northern Guangdong Province

  • BACKGROUND

    Monazite is a common uranium-bearing accessory mineral in granite-related uranium deposits in South China. The Longhuashan pluton is an important U-bearing granite in the Zhuguangshan batholith, Northern Guangdong. Distinct alteration coronas of monazite were observed in the pluton. However, textures and compositions of alteration coronas of monazite and their implications for uranium mineralization are still poorly understood.

    OBJECTIVES

    To investigate the detailed textural and compositional evolution of monazite in granites during alteration, and to provide insights into uranium mobilization and enrichment in granite-related uranium deposits.

    METHODS

    Textures and chemical compositions of alteration coronas of monazite were investigated using electron probe microanalyzer (EPMA).

    RESULTS

    Alteration coronas of monazite in the Longhuashan granite consisted of newly formed apatite, allanite, epidote, and Th-rich phases. The monazite alteration coronas area was a concentric zone composed of monazite, apatite (including thorium-rich minerals), and monazite-epidote from the inside to the outside. Mass balance calculations showed that during the alteration of monazite, light rare earth (LREE), Y, Th, and U elements were remobilized and migrated, and the fluid brought in elements such as Ca, Fe, Al, and F to form alteration coronas composed of apatite, epidote, and thorium-rich minerals. The EPMA mapping showed that monazite alteration led to the remobilization of uranium, but the uranium was mainly enriched in the altered coronas. In this pluton, 3.7% U was located in monazite, and more than 80% U was hosted by uraninite.

    CONCLUSIONS

    Monazite only contributes limited uranium to regional uranium mineralization, and uraninite is the most important host for uranium in the Longhuashan granite.

  • 加载中
  • [1] Bea F. Residence of REE, Y, Th and U in granites and crustal protoliths: Implications for the chemistry of crustal melts[J]. Journal of Petrology, 1996, 7: 521-552.

    Google Scholar

    [2] Dini A, Rocchi S, Westerman D S. Reaction microtextures of REE-Y-Th-U accessory minerals in the Monte Capanne pluton (Elba Island, Italy): A possible indicator of hybridization processes[J]. Lithos, 2004, 78: 101-118. doi: 10.1016/j.lithos.2004.04.045

    CrossRef Google Scholar

    [3] Förster H J, Rhede D, Hecht L. Chemical composition of radioactive accessory minerals: Implications for the evolution, alteration, age, and uranium fertility of the Fichtelgebirge granites (NE Bavaria, Germany)[J]. Neues Jahrbuch Für Mineralogie-Abhandlungen, 2008, 185(2): 161-182. doi: 10.1127/0077-7757/2008/0117

    CrossRef Google Scholar

    [4] 胡欢, 王汝成, 陈卫锋, 等. 桂东北豆乍山产铀花岗岩的铀源矿物研究[J]. 地质论评, 2012, 58(6): 1056-1068. doi: 10.3969/j.issn.0371-5736.2012.06.006

    CrossRef Google Scholar

    Hu H, Wang R C, Chen W F, et al. Study on resource minerals of Douzhashan uranium-bearing granite, northeastern Guangxi[J]. Geological Review, 2012, 58(6): 1056-1068. doi: 10.3969/j.issn.0371-5736.2012.06.006

    CrossRef Google Scholar

    [5] Montel J M, Foret S, Veschambre M, et al. Electron microprobe dating of monazite[J]. Chemical Geology, 1996, 131: 37-53. doi: 10.1016/0009-2541(96)00024-1

    CrossRef Google Scholar

    [6] Poitrasson F, Chenery S, Shepherd T J. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3283-3297. doi: 10.1016/S0016-7037(00)00433-6

    CrossRef Google Scholar

    [7] 张雅, 李全忠, 闫俊, 等. LA-ICP-MS独居石U-Th-Pb测年方法研究[J]. 岩矿测试, 2021, 40(5): 637-649.

    Google Scholar

    Zhang Y, Li Q Z, Yan J, et al. Analytical conditions for U-Th-Pb dating of monazite by LA-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(5): 637-649.

    Google Scholar

    [8] Cuney M, Mathieu R. Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville Basin, Gabon[J]. Geology, 2000, 28: 743-746.

    Google Scholar

    [9] Hecht L, Cuney M. Hydrothermal alteration of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada): Implications for the formation of unconformity-related uranium deposits[J]. Mineralium Deposita, 2000, 35: 791-795. doi: 10.1007/s001260050280

    CrossRef Google Scholar

    [10] 张丽, 孙立强, 陈卫锋, 等. 诸广南部产铀花岗岩长江岩体中的绿泥石和铀源矿物研究[J]. 高校地质学报, 2018, 24(1): 13-32.

    Google Scholar

    Zhang L, Sun L Q, Chen W F, et al. Study on chlorites and uranium-source minerals of uranium-ore-bearing Changjiang granite in southern Zhuguang composite[J]. Geological Journal of China Universities, 2018, 24(1): 13-32.

    Google Scholar

    [11] 祁家明, 黄国龙, 朱捌, 等. 粤北棉花坑铀矿床蚀变花岗岩副矿物特征研究[J]. 地质学报, 2014, 88(9): 1691-1704.

    Google Scholar

    Qi J M, Huang G L, Zhu B, et al. Compositions study of auxiliary minerals in altered granitic rocks of the Mianhuakeng uranium deposit in northern Guangdong[J]. Acta Geologica Sinica, 2014, 88(9): 1691-1704.

    Google Scholar

    [12] Poitrasson F, Chenery S, Bland D J. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications[J]. Earth and Planetary Science Letters, 1996, 145(1-4): 79-96. doi: 10.1016/S0012-821X(96)00193-8

    CrossRef Google Scholar

    [13] Finger F, Broska I, Roberts M P, et al. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps[J]. American Mineralogist, 1998, 83: 248-258. doi: 10.2138/am-1998-3-408

    CrossRef Google Scholar

    [14] Broska I, Williams C T, Janák M, et al. Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the western Carpathians, Slovakia[J]. Lithos, 2005, 82(1-2): 71-83. doi: 10.1016/j.lithos.2004.12.007

    CrossRef Google Scholar

    [15] Budzyń B, Hetherington C J, Williams M L, et al. Fluid-mineral interactions and constraints on monazite alteration during metamorphism[J]. Mineralogical Magazine, 2010, 74(4): 659-681. doi: 10.1180/minmag.2010.074.4.659

    CrossRef Google Scholar

    [16] Harlov D E, Wirth R, Hetherington C J. Fluid-mediated partial alteration in monazite: The role of coupled dissolution-reprecipitation in element redistribution and mass transfer[J]. Contributions to Mineralogy and Petrology, 2011, 162: 329-348. doi: 10.1007/s00410-010-0599-7

    CrossRef Google Scholar

    [17] Kelly N M, Harley S L, Möller A. Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration[J]. Chemical Geology, 2012, 322-323: 192-208. doi: 10.1016/j.chemgeo.2012.07.001

    CrossRef Google Scholar

    [18] Seydoux-Guillaume A M, Montel J M, Bingen B, et al. Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers[J]. Chemical Geology, 2012, 330: 140-158.

    Google Scholar

    [19] Skrzypek E, Sakata S, Sorger D. Alteration of magmatic monazite in granitoids from the Ryoke belt (SW Japan): Processes and consequences[J]. American Mineralogist, 2020, 105(4): 538-554. doi: 10.2138/am-2020-7025

    CrossRef Google Scholar

    [20] Zhang L, Chen Z Y, Wang F Y, et al. Release of uranium from uraninite in granites through alteration: Implications for the source of granite-related uranium ores[J]. Economic Geology, 2021, 116(5): 1115-1139. doi: 10.5382/econgeo.4822

    CrossRef Google Scholar

    [21] 朱捌. 地幔流体与铀成矿作用研究——以诸广山南部铀矿田为例[D]. 成都: 成都理工大学, 2010.

    Google Scholar

    Zhu B. The study of mantle liquid and uranium metallogenesis—Take uranium ore field of south Zhuguang mountain as an example[D]. Chengdu: Chengdu University of Technology, 2010.

    Google Scholar

    [22] Deng P, Ren J S, Ling H F, et al. SHRIMP zircon U-Pb ages and tectonic implications for Indosinian granitoids of southern Zhuguangshan granitic composite, South China[J]. Chinese Science Bulletin, 2012, 57: 1542-1552. doi: 10.1007/s11434-011-4951-8

    CrossRef Google Scholar

    [23] Zhang L, Chen Z Y, Li X F, et al. Zircon U-Pb geo-chronology and geochemistry of granites in the Zhuguangshan complex, South China: Implications for uranium mineralization[J]. Lithos, 2018, 308-309: 19-33. doi: 10.1016/j.lithos.2018.02.029

    CrossRef Google Scholar

    [24] 张龙, 陈振宇, 田泽瑾, 等. 电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J]. 岩矿测试, 2016, 35(1): 98-107.

    Google Scholar

    Zhang L, Chen Z Y, Tian Z J, et al. The application of electron microprobe dating method on uranium minerals in Changjiang granite, northern Guangdong[J]. Rock and Mineral Analysis, 2016, 35(1): 98-107.

    Google Scholar

    [25] Zhang L, Chen Z Y, Li S R, et al. Isotope geochronology, geochemistry, and mineral chemistry of the U-bearing and barren granites from the Zhuguangshan complex, South China: Implications for petrogenesis and uranium mineralization[J]. Ore Geology Reviews, 2017, 91: 1040-1065. doi: 10.1016/j.oregeorev.2017.07.017

    CrossRef Google Scholar

    [26] 钟福军, 严杰, 夏菲, 等. 粤北长江花岗岩型铀矿田沥青铀矿原位U-Pb年代学研究及其地质意义[J]. 岩石学报, 2019, 35(9): 2727-2744.

    Google Scholar

    Zhong F J, Yan J, Xia F, et al. In-situ U-Pb isotope geochronology of uraninite for Changjiang granite-type uranium ore field in northern Guangdong, China: Implications for uranium mineralization[J]. Acta Petrologica Sinica, 2019, 35(9): 2727-2744.

    Google Scholar

    [27] 李献华, 胡瑞忠, 饶冰. 粤北白垩纪基性岩脉的年代学和地球化学[J]. 地球化学, 1997, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004

    CrossRef Google Scholar

    Li X H, Hu R Z, Rao B. Geochronology and geochemistry of Cretaceous mafic dikes from northern Guangdong, SE China[J]. Geochimica, 1997, 26(2): 14-31. doi: 10.3321/j.issn:0379-1726.1997.02.004

    CrossRef Google Scholar

    [28] Shu L S, Deng P, Wang B, et al. Lithology, kinematics and geochronology related to Late Mesozoic Basin-mountain evolution in the Nanxiong—Zhuguang area, South China[J]. Science in China (Series D: Earth Sciences), 2004, 47(8): 673-688. doi: 10.1360/03yd0113

    CrossRef Google Scholar

    [29] Zhang C, Cai Y, Xu H, et al. Mechanism of mineralization in the Changjiang uranium ore field, South China: Evidence from fluid inclusions, hydrothermal alteration, and H-O isotopes[J]. Ore Geology Reviews, 2017, 86: 225-253. doi: 10.1016/j.oregeorev.2017.01.013

    CrossRef Google Scholar

    [30] 黄国龙, 吴烈勤, 邓平, 等. 粤北花岗岩型铀矿找矿潜力及找矿方向[J]. 铀矿地质, 2006, 22(5): 267-275.

    Google Scholar

    Huang G L, Wu L Q, Deng P, et al. Prospecting potential and direction for granite uranium deposit in north Guangdong, China[J]. Uranium Geology, 2006, 22(5): 267-275.

    Google Scholar

    [31] 陈跃辉, 陈祖伊, 蔡煜琦, 等. 华东南中新生代伸展构造时空演化与铀矿化时空分布[J]. 铀矿地质, 1997, 13(3): 129-138.

    Google Scholar

    Chen Y H, Chen Z Y, Cai Y Q, et al. Space-time evolution of Meso—Cenozoic extensional tectonics and distributions of uranium mineralization in southeastern China[J]. Uranium Geology, 1997, 13(3): 129-138.

    Google Scholar

    [32] Bonnetti C, Liu X D, Mercadier J, et al. The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China: Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralization[J]. Ore Geology Reviews, 2018, 92: 588-612. doi: 10.1016/j.oregeorev.2017.12.010

    CrossRef Google Scholar

    [33] Montel J M, Giot R. Fracturing around radioactive minerals: Elastic model and applications[J]. Physics and Chemistry of Minerals, 2013, 40: 635-645. doi: 10.1007/s00269-013-0599-z

    CrossRef Google Scholar

    [34] Geisler T. ChemAge: A 32-bit Windows program for chemical age calculations and the graphical data presentation[J]. Beiheftzum European Journal of Mineralogy, 1999, 11: 154.

    Google Scholar

    [35] Bowles J F. Age dating of individual grains of uraninite in rocks from electron microprobe analyses[J]. Chemical Geology, 1990, 83: 47-53. doi: 10.1016/0009-2541(90)90139-X

    CrossRef Google Scholar

    [36] 张龙, 陈振宇, 田泽瑾, 等. 粤北产铀与不产铀花岗岩中铀矿物特征的电子探针研究及其找矿意义[J]. 岩矿测试, 2016, 35(3): 310-319.

    Google Scholar

    Zhang L, Chen Z Y, Tian Z J, et al. EPMA study on characteristics of uranium minerals in uranium-bearing and uranium-barren granites in northern Guangdong and its prospecting significance[J]. Rock and Mineral Analysis, 2016, 35(3): 310-319.

    Google Scholar

    [37] 张龙, 陈振宇, 李胜荣, 等. 粤北棉花坑(302)铀矿床围岩蚀变分带的铀矿物研究[J]. 岩石学报, 2018, 34(9): 2657-2670.

    Google Scholar

    Zhang L, Chen Z Y, Li S R, et al. Characteristics of uranium minerals in wall-rock alteration zones of the Mianhuakeng (No. 302) uranium deposit, northern Guangdong, South China[J]. Acta Petrologica Sinica, 2018, 34(9): 2657-2670.

    Google Scholar

    [38] 徐争启, 欧阳鑫东, 张成江, 等. 电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义[J]. 岩矿测试, 2017, 36(6): 641-648.

    Google Scholar

    Xu Z Q, Ouyang X D, Zhang C J, et al. Application of electron microprobe chemical dating to Datian uraninite in Panzhihua and its significance[J]. Rock and Mineral Analysis, 2017, 36(6): 641-648.

    Google Scholar

    [39] Kempe U. Precise electron microprobe age determination in altered uraninite: Consequences on the intrusion age and the metallogenic significance of the Kirchberg granite (Erzgebirge, Germany)[J]. Contributions to Mineralogy and Petrology, 2003, 145: 107-118.

    Google Scholar

    [40] Cuney M, Friedrich M. Physicochemical and crystal-chemical controls on accessory mineral paragenesis in granitoids: Implications for uranium metallogenesis[J]. Bulletin de Minéralogy, 1987, 110: 235-247.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1796) PDF downloads(73) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint