Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 6
Article Contents

GU Tao, ZHU Xiao-hua, ZHAO Xin-wen, JIANG Tuo, QIU Xiao-fei, ZHENG Xiao-zhan, SHUAI Qin. Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136
Citation: GU Tao, ZHU Xiao-hua, ZHAO Xin-wen, JIANG Tuo, QIU Xiao-fei, ZHENG Xiao-zhan, SHUAI Qin. Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136

Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou

More Information
  • BACKGROUND

    Environmental geochemical conditions affect the quality of famous and special agricultural products. Xinken lotus root is the national product of geographical indication. Exploring the relationship between the geological background of the production area and the quality of lotus root is of great significance to the large-scale planting of Xinken lotus root.

    OBJECTIVES

    To reveal the correlation between the quality of lotus root and the environmental geochemical characteristics in the producing area.

    METHODS

    Sediment, surface water and fresh lotus root in the Xinken area were systematically sampled and analyzed.

    RESULTS

    The concentrations of nutrients, i.e., Mn, Zn, Mo, Co, V and Fe, in the sediment of the lotus root pond were high, in the first grade (rich) level. Selenium was mainly in proper amounts and high selenium grade. The concentrations of Cr, Cu, Hg, Ni, Pb and Zn were lower than those of the soil pollution risk threshold of agricultural land. Cu, Zn, Se, B, Hg, Cd, As, Cr(Ⅵ), Pb and Ni in surface water of the lotus pond met the requirement for irrigation water quality. The lotus root was rich in starch, soluble sugar, K, P, Ca, Mg, Fe, Zn and Se, and the contents of heavy metals and crude fiber were low. The average bioaccumulation coefficients of lotus root for different elements ranged from 0.0484 to 65.67. The enrichment ability of P was the strongest and that of Ge was the weakest. There was a significant positive correlation between B and starch in lotus root pond sediment (p ≤ 0.05), between Ca and protein, while a significant negative correlation between As and soluble sugar. The contents of B, Co, Fe, Mg, Mn, V, Ca and Ge in the sediment of the lotus pond were high, which was beneficial to the accumulation of nutrients in lotus root, and thus production of safe and high-quality lotus roots.

    CONCLUSIONS

    Importance should be attached to the supplement of organic matter, Ca, N and Ge in the lotus pond during the planting process and more attention to the potential ecological security risks caused by Cd and As.

  • 加载中
  • [1] Ferretti C G. Relationship between the geology, soil assessment, and terroir of Gewürtztraminer vineyards: A case study in the dolomites of northern Italy[J]. CATENA, 2019, 179: 74-84. doi: 10.1016/j.catena.2019.03.044

    CrossRef Google Scholar

    [2] Zhou G H, Zhu L X, Ren T X, et al. Geochemical characteristics affecting the cultivation and quality of Longjing Tea[J]. Journal of Geochemical Exploration, 1995, 55(1-3): 183-191. doi: 10.1016/0375-6742(95)00017-8

    CrossRef Google Scholar

    [3] 黎旭荣, 朱鑫, 张高强, 等. 广东四会优质沙糖桔产地生态地球化学特征[J]. 现代地质, 2012, 26(1): 125-130. doi: 10.3969/j.issn.1000-8527.2012.01.013

    CrossRef Google Scholar

    Li X R, Zhu X, Zhang G Q, et al. Eco-geochemical characteristics of the high-quality Shatang Citrus producing area in Sihui, Guangdong[J]. Geoscience, 2012, 26(1): 125-130. doi: 10.3969/j.issn.1000-8527.2012.01.013

    CrossRef Google Scholar

    [4] Amarante C V T D, de Fátima Ferreira Da Rosa E, Albuquerque J A, et al. Soil attributes and fruit quality in organic and conventional apple production systems in southern Brazil[J]. Artigo Científico, 2015, 46(1): 99-109.

    Google Scholar

    [5] Kumssa D B, Joy E J, Young S D, et al. Variation in the mineral element concentration of Moringa oleifera Lam, and M. stenopetala (Bak. f. ) Cuf. : Role in human nutrition[J]. PLOS ONE, 2017, 12(4): e175503.

    Google Scholar

    [6] 严洪泽, 周国华, 孙彬彬, 等. 福建龙海杨梅产地元素地球化学特征[J]. 中国地质, 2018, 45(6): 1155-1166.

    Google Scholar

    Yan H Z, Zhou G H, Sun B B, et al. Geochemical characteristics of the bayberry producing area in Longhai, Fujian[J]. Geology in China, 45(6): 1155-1166.

    Google Scholar

    [7] 王卫星, 曹淑萍, 李攻科. 天津盘山磨盘柿子品质分析及其产地土壤地球化学特征[J]. 物探与化探, 2019, 43(5): 1131-1137.

    Google Scholar

    Wang W X, Cao S P, Li G K. Chemical composition analysis and soil geochemical characteristics of Mopan persimmon in Panshan, Tianjin[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1131-1137.

    Google Scholar

    [8] 任娜欧, 王数, 张凤荣, 等. 北京妙峰山优质玫瑰生长的农业地质背景[J]. 中国农业大学学报, 2018, 23(7): 107-115.

    Google Scholar

    Ren N O, Wang S, Zhang F R, et al. Study on the agricultural geological background of high quality rose growth in Miaofeng Mountain in Beijing[J]. Journal of China Agricultural University, 2018, 23(7): 107-115.

    Google Scholar

    [9] 王金龙, 孙彬彬, 周国华, 等. 漳州水仙花产地生态地球化学特征[J]. 桂林理工大学学报, 2018, 38(3): 420-428. doi: 10.3969/j.issn.1674-9057.2018.03.007

    CrossRef Google Scholar

    Wang J L, Sun B B, Zhou G H, et al. Ecological and geochemical characteristics of Zhangzhou narcissus planting area[J]. Journal of Guilin University of Technology, 2018, 38(3): 420-428. doi: 10.3969/j.issn.1674-9057.2018.03.007

    CrossRef Google Scholar

    [10] 孙厚云, 孙晓明, 贾凤超, 等. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 2020, 47(6): 1646-1667.

    Google Scholar

    Sun H Y, Sun X M, Jia F C, et al. The eco-geochemical characteristics of germanium and its relationship with the genuine medicinal material scutellaria baicalensis in Chengde, Hebei Province[J]. Geology in China, 2020, 47(6): 1646-1667.

    Google Scholar

    [11] 孙厚云, 卫晓锋, 孙晓明, 等. 承德杏仁产区关键带基岩-土壤-作物果实BRSPC系统元素迁聚特征[J]. 地球科学, 2021, 46(7): 2621-2645.

    Google Scholar

    Sun H Y, Wei X F, Sun X M, et al. Element migration and accumulation characteristics of bedrock-regolith-soil-fruit plant continuum of the earth's critical zone in Chengde almond producing area[J]. Earth Science, 2021, 46(7): 2621-2645.

    Google Scholar

    [12] Zhu F. Structures, properties, and applications of lotus starches[J]. Food Hydrocolloids, 2017, 63: 332-348. doi: 10.1016/j.foodhyd.2016.08.034

    CrossRef Google Scholar

    [13] Zhang Y, Lu X, Zeng S, et al. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn. ) seeds: A review[J]. Phytochemistry Reviews, 2015, 14(3): 321-334. doi: 10.1007/s11101-015-9401-9

    CrossRef Google Scholar

    [14] 罗满, 张灿明, 李有志, 等. 洞庭湖区莲藕重金属污染特征[J]. 农业资源与环境学报, 2016, 33(6): 554-559.

    Google Scholar

    Luo M, Zhang C M, Li Y Z, et al. Characteristics of heavy metals contamination in lotus root in the Dongting Lake area, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(6): 554-559.

    Google Scholar

    [15] 张文胜, 吴永中, 龙伟, 等. 广州新垦莲藕品种应用现状、问题与对策[J]. 长江蔬菜, 2016(3): 13-15.

    Google Scholar

    Zhang W S, Wu Y Z, Long W, et al. Application status, problems and countermeasures of Xinken lotus root varieties in Guangzhou[J]. Journal of Changjiang Vegetables, 2016(3): 13-15.

    Google Scholar

    [16] 张文胜. 风味独特的新垦莲藕[J]. 长江蔬菜, 2016(12): 20-21.

    Google Scholar

    Zhang W S. Xinken lotus root with unique flavor[J]. Journal of Changjiang Vegetables, 2016(12): 20-21.

    Google Scholar

    [17] Rai G K, Bhat B A, Mushtaq M, et al. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies[J]. Physiologia Plantarum, 2021: 1-18.

    Google Scholar

    [18] Mansoor S, Kour N, Manhas S, et al. Biochar as a tool for effective management of drought and heavy metal toxicity[J]. Chemosphere, 2021, 271: 129458. doi: 10.1016/j.chemosphere.2020.129458

    CrossRef Google Scholar

    [19] Rehman A U, Nazir S, Irshad R, et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles[J]. Journal of Molecular Liquids, 2021, 321: 114455. doi: 10.1016/j.molliq.2020.114455

    CrossRef Google Scholar

    [20] 窦磊, 杜海燕, 游远航, 等. 珠江三角洲经济区生态地球化学评价[J]. 现代地质, 2014, 28(5): 915-927. doi: 10.3969/j.issn.1000-8527.2014.05.005

    CrossRef Google Scholar

    Dou L, Du H Y, You Y H, et al. Eco-geochemical survey and assessment in Pearl River Delta Economic Zone, Guangdong Province, China[J]. Geoscience, 2014, 28(5): 915-927. doi: 10.3969/j.issn.1000-8527.2014.05.005

    CrossRef Google Scholar

    [21] 杜海燕, 赖启宏, 周国华, 等. 广东省珠江三角洲经济区区域生态地球化学评价报告[R]. 2011.

    Google Scholar

    Du H Y, Lai Q H, Zhou G H, et al. Report on eco-geochemical survey and assessment in Pearl River Delta Economic Zone, Guangdong Province[R]. 2011.

    Google Scholar

    [22] 赵亚楠, 周玉蓉, 王红梅. 宁夏东部荒漠草原灌丛引入下土壤水分空间异质性[J]. 应用生态学报, 2018, 29(11): 3577-3586.

    Google Scholar

    Zhao Y N, Zhou Y R, Wang H M. Spatial heterogeneity of soil water content under introduced shrub (Caragana korshinskii) in desert grassland of the eastern Ningxia, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3577-3586.

    Google Scholar

    [23] 崔昆, 赵庚星, 王卓然, 等. 黄河三角洲夏季典型田块土壤盐分的多尺度空间变异[J]. 应用生态学报, 2020, 31(5): 1451-1458.

    Google Scholar

    Cui K, Zhao G X, Wang Z R, et al. Multi-scale spatial variability of soil salinity in typical fields of the Yellow River Delta in summer[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1451-1458.

    Google Scholar

    [24] 刘子宁, 窦磊, 张伟. 珠江三角洲第四纪沉积物Cd元素的分布特征及成因[J]. 地质通报, 2012, 31(1): 172-180.

    Google Scholar

    Liu Z N, Dou L, Zhang W. Distribution and origin of cadmium in the Quaternary sediments of the Pearl River Delta Plain, Guangdong Province, southern China[J]. Geological Bulletin of China, 2012, 31(01): 172-180.

    Google Scholar

    [25] 陈丹青, 谢志宜, 张雅静, 等. 基于PCA/APCS和地统计学的广州市土壤重金属来源解析[J]. 生态环境学报, 2016, 25(6): 1014-1022.

    Google Scholar

    Chen D Q, Xie Z Y, Zhang Y J, et al. Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS model and geostatistics[J]. Ecology and Environmental Sciences, 2016, 25(6): 1014-1022.

    Google Scholar

    [26] 徐慧秋, 黄银华, 吴志峰, 等. 广州市农业土壤As和Cd污染及其对景观异质性的多尺度响应[J]. 应用生态学报, 2016, 27(10): 3283-3289.

    Google Scholar

    Xu H Q, Huang Y H, Wu Z F, et al. Agricultural soil contamination from As and Cd and its responses to landscape heterogeneity at multiple scales in Guangzhou, China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3283-3289.

    Google Scholar

    [27] 涂静. 莲藕品质评价及其冻结特性研究[D]. 无锡: 江南大学, 2014.

    Google Scholar

    Tu J. Study on the quality evaluation and freezing characteristics of lotus root[D]. Wuxi: Jiangnan University, 2014.

    Google Scholar

    [28] 高培培, 肖冰, 刘文菊, 等. 莲藕中重金属含量特征及其健康风险评价[J]. 环境化学, 2020, 39(2): 362-370.

    Google Scholar

    Gao P P, Xiao B, Liu W J, et al. Analysis and health risk assessment of heavy metal in lotus root[J]. Environmental Chemistry, 2020, 39(2): 362-370.

    Google Scholar

    [29] Xiong C, Zhang Y, Xu X, et al. Lotus roots accumulate heavy metals independently from soil in main production regions of China[J]. Scientia Horticulturae, 2013, 164: 295-302.

    Google Scholar

    [30] 程婷婷, 惠小涵, 尚欣欣, 等. 10个产地莲藕营养成分分析与品质综合评价[J]. 食品工业科技, 2021, 42(8): 320-325.

    Google Scholar

    Cheng T T, Hui X H, Shang X X, et al. Nutrient composition analysis and quality comprehensive evaluation of lotus root in 10 producing areas[J]. Science and Technology of Food Industry, 2021, 42(8): 320-325.

    Google Scholar

    [31] 杨月欣. 中国食物成分表(标准版)[M]. 北京: 北京大学医学出版社, 2018: 1-363.

    Google Scholar

    Yang Y X. China food composition tables (The Standard Edition)[M]. Beijing: Peking University Medical Press, 2018: 1-363.

    Google Scholar

    [32] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459.

    Google Scholar

    Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environment Science, 2020, 41(1): 449-459.

    Google Scholar

    [33] Ng C C, Boyce A N, Abas M R, et al. Phytoassessment of vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminated soil[J]. Environmental Monitoring and Assessment, 2019, 191(434): 1-16. doi: 10.1007%2Fs10661-019-7573-2

    CrossRef Google Scholar

    [34] 阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159.

    Google Scholar

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron iodine tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159.

    Google Scholar

    [35] Al-Mayahi A M W. Effect of calcium and boron on growth and development of callus and shoot regeneration of date palm 'Barhee'[J]. Canadian Journal of Plant Science, 2020, 100(4): 357-364.

    Google Scholar

    [36] Wang Q, Zhang W, Xiao H, et al. Involvement of boron transporter BOR1 in growth under low boron and high nitrate conditions in Arabidopsis thaliana[J]. Physiologia Plantarum, 2021, 171(4): 703-713.

    Google Scholar

    [37] Burger A, Lichtscheidl I. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants'potential for bioremediation[J]. Science of The Total Environment, 2018, 618: 1459-1485.

    Google Scholar

    [38] Tang R, Zhao F, Yang Y, et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nature Plants, 2020, 6(4): 384-393.

    Google Scholar

    [39] Nakamura T, Shimada Y, Takeda T, et al. Organogermanium compound, Ge-132, forms complexes with adrenaline, ATP and other physiological cis-diol compounds[J]. Future Medicinal Chemistry, 2015, 7(10): 1233-1246.

    Google Scholar

    [40] 刘艳, 侯龙鱼, 赵广亮, 等. 锗对植物影响的研究进展[J]. 中国生态农业学报, 2015, 23(8): 931-937.

    Google Scholar

    Liu Y, Hou L Y, Zhao G L, et al. Mechanism and application of germanium in plant growth[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 931-937.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(5)

Article Metrics

Article views(1710) PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint