Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 6
Article Contents

REN Yu, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, LI Jin-cheng. Evolution Characteristics and Change Mechanism of Arsenic and Fluorine in Shallow Groundwater from a Typical Irrigation Area in the Lower Reaches of the Yellow River (Henan) in 2010—2020[J]. Rock and Mineral Analysis, 2021, 40(6): 846-859. doi: 10.15898/j.cnki.11-2131/td.202110090143
Citation: REN Yu, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, LI Jin-cheng. Evolution Characteristics and Change Mechanism of Arsenic and Fluorine in Shallow Groundwater from a Typical Irrigation Area in the Lower Reaches of the Yellow River (Henan) in 2010—2020[J]. Rock and Mineral Analysis, 2021, 40(6): 846-859. doi: 10.15898/j.cnki.11-2131/td.202110090143

Evolution Characteristics and Change Mechanism of Arsenic and Fluorine in Shallow Groundwater from a Typical Irrigation Area in the Lower Reaches of the Yellow River (Henan) in 2010—2020

More Information
  • BACKGROUND

    A typical irrigation area of the downstream Yellow River (Henan) is an important agricultural planting area in the northern Henan Plain. The shallow water quality in this area is generally poor, which is often used for crop irrigation or livestock drinking, posing a risk to human health. Therefore, the study on the variation characteristics and mechanism of arsenic and fluorine content in groundwater in this area will help to improve the level of understanding of pollution in this area.

    OBJECTIVES

    To investigate the spatial variation characteristics and mechanism of arsenic and fluorine concentration.

    METHODS

    Based on 327 groups of shallow groundwater samples collected in 2010 and 2020 in the irrigated area, the distribution of arsenic and fluorine in the groundwater of the irrigated area was analyzed, and compared to the evolution characteristics of arsenic and fluorine in the shallow groundwater of the irrigated area in the last ten years.

    RESULTS

    In 2020, the number of samples with high arsenic concentration (>10μg/L) and high fluorine concentration (>1mg/L) in shallow groundwater accounted for 26.1% and 26.06%, respectively. The high-arsenic groundwater was distributed in the sedimentary environments with interbedding structure of sediment, such as the Taihang Mountain depression and the Yellow River alluvial plain, with strong reducibility, poor groundwater runoff and strong cation exchange, resulting in high concentration of Ca2+ in the environment. Arsenic concentration increased in 31.8% of water samples and decreased in 36.7% of water samples in the last ten years. The increase of arsenic content was caused by the dissolution and release of manganese oxide due to the enhanced reducibility of groundwater. The variation of water level caused by agricultural irrigation and water replacement in different areas during the last ten years was a potential factor of arsenic concentration change. The high-fluorine groundwater was mainly distributed along the Yellow River in Xinxiang and Puyang, Henan Province. The concentration of fluorine ion was affected by the dissolution of calcareous minerals such as fluorite in the sediments, which made the high-fluorine groundwater appear in the low-calcium environment. In the last ten years, the study area with decreased fluorine ion concentration accounted for 60.2%, whereas areas with increased fluorine ion concentration accounted for 32.1%. The overall change trend was good, but the fluorine ion concentration in the high fluorine area continued to increase. Changes in fluorine concentration were also affected by changes in Ca2+, with further increases (decreases) as Ca2+ concentration decreased (increased). Elevated fluorine in groundwater was distributed along the Yellow River, affected greatly by the Yellow River water supply. So, the groundwater flow condition was good and the cation exchange was weakened, reducing the Ca2+ content. At this time, the arsenic content in the groundwater was less affected by the environment, so the study area with fluorine increase showed an inverse relationship between arsenic and fluorine in terms of regional distribution and evolution.

    CONCLUSIONS

    This study will provide support for rational utilization of groundwater in the study area.

  • 加载中
  • [1] 沈照理, 郭华明, 徐刚, 等. 地下水化学异常与地方病[J]. 自然杂志, 2010, 32(2): 83-89. doi: 10.3969/j.issn.0253-9608.2010.02.006

    CrossRef Google Scholar

    Shen Z L, Guo H Y, Xu G, et al. Abnormal groundwater chemistry and endemic disease[J]. Chinese Journal of Nature, 2010, 32(2): 83-89. doi: 10.3969/j.issn.0253-9608.2010.02.006

    CrossRef Google Scholar

    [2] 邓安琪, 董兆敏, 高群, 等. 中国地下水砷健康风险评价[J]. 中国环境科学, 2017(9): 3556-3565. doi: 10.3969/j.issn.1000-6923.2017.09.044

    CrossRef Google Scholar

    Deng A Q, Dong Z M, Gao Q, et al. Health risk assessment of arsenic in groundwater across China[J]. China Environmental Science, 2017(9): 3556-3565. doi: 10.3969/j.issn.1000-6923.2017.09.044

    CrossRef Google Scholar

    [3] Senthil R B, Senthil K P. A review on sources, identification and treatment strategies for the removal of toxic arsenic from water system[J]. Journal of Hazardous Materials, 2021, 418: 126299. doi: 10.1016/j.jhazmat.2021.126299

    CrossRef Google Scholar

    [4] 吴功建, 李家熙, 黄怀曾, 等. 硒氟的地球化学特征与人体健康[J]. 岩矿测试, 1996, 15(4): 241-250.

    Google Scholar

    Wu G J, Li J X, Huang H Z, et al. Geochemical characteristics of selenium and fluorine and human health[J]. Rock and Mineral Analysis, 1996, 15(4): 241-250.

    Google Scholar

    [5] Manish K, Ritusmita G, Arbind K P, et al. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review[J]. Chemosphere, 2020, 249: 126126. doi: 10.1016/j.chemosphere.2020.126126

    CrossRef Google Scholar

    [6] Kumar Y M, Saidulu B D, Kumar G A, et al. Status and management of arsenic pollution in groundwater: A comprehensive appraisal of recent global scenario, human health impacts, sustainable field-scale treatment technologies[J]. Journal of Environmental Chemical Engineering, 2021, 9: 105203. doi: 10.1016/j.jece.2021.105203

    CrossRef Google Scholar

    [7] 何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012

    CrossRef Google Scholar

    He J, Zhang F C, Han S B, et al. The distribution and genetic types of high-fluoride groundwater in northern China[J]. Geology in China, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012

    CrossRef Google Scholar

    [8] 郭华明, 杨素珍, 沈照理. 富砷地下水研究进展[J]. 地球科学进展, 2007.22(11): 1109-1117. doi: 10.3321/j.issn:1001-8166.2007.11.002

    CrossRef Google Scholar

    Guo H M, Yang S Z, Shen Z L. High arsenic groundwater in the world: Overview and research perspectives[J]. Advances in Earth Science, 2007, 22(11): 1109-1117. doi: 10.3321/j.issn:1001-8166.2007.11.002

    CrossRef Google Scholar

    [9] Ruohan W, Podgorski J, Berg M, et al. Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India[J]. Environmental Geochemistry and Health, 2021, 43(7): 2649-2664. doi: 10.1007/s10653-020-00655-7

    CrossRef Google Scholar

    [10] Janardhana R N. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies[J]. Environmental Research, 2022, 203: 111782. doi: 10.1016/j.envres.2021.111782

    CrossRef Google Scholar

    [11] Shakir A, Sachin T, Aditya S, et al. Worldwide contamination of water by fluoride[J]. Environmental Chemistry Letters, 2016, 14(3): 291-315. doi: 10.1007/s10311-016-0563-5

    CrossRef Google Scholar

    [12] 王焰新, 苏春利, 谢先军, 等. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 2010, 37(3): 771-780. doi: 10.3969/j.issn.1000-3657.2010.03.033

    CrossRef Google Scholar

    Wang Y X, Su C L, Xie X J, et al. The genesis of high arsenic groundwater: A case study in Datong Basin[J]. Geology in China, 2010, 37(3): 771-780. doi: 10.3969/j.issn.1000-3657.2010.03.033

    CrossRef Google Scholar

    [13] 高存荣. 河套平原地下水砷污染机理的探讨[J]. 中国地质灾害与防治学报, 1999, 10(2): 25-32.

    Google Scholar

    Gao C R. Research on the mechanism of arsenic pollution in groundwater in the Hetao Plain, Inner Mongolia, China[J]. The Chinese Journal of Geological Hazard and Control, 1999, 10(2): 25-32.

    Google Scholar

    [14] 汤洁, 卞建民, 李昭阳, 等. 吉林省饮水型砷中毒区地下水砷的分布规律与成因研究[J]. 地学前缘, 2014, 21(4): 30-36.

    Google Scholar

    Tang J, Bian J M, Li Z Y, et al. A study of the distribution and causes of groundwater arsenic in the arsenism area of drinking water type in Jilin Province[J]. Earth Science Frontiers, 2014, 21(4): 30-36.

    Google Scholar

    [15] Guo H M, Wen D G, Liu Z Y. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41: 196-217. doi: 10.1016/j.apgeochem.2013.12.016

    CrossRef Google Scholar

    [16] 毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2): 260-268.

    Google Scholar

    Mao R Y, Guo H M, Jia Y F, et al. Distribution characteristics and genesis of fluoride groundwater in the Hetao Basin, Inner Mongolia[J]. Earth Science Frontier, 2016, 23(2): 260-268.

    Google Scholar

    [17] 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. doi: 10.3969/j.issn.1672-6561.2013.03.008

    CrossRef Google Scholar

    Guo H M, Guo Q, Jia Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3): 83-96. doi: 10.3969/j.issn.1672-6561.2013.03.008

    CrossRef Google Scholar

    [18] 张怀胜, 蔡五田, 边超, 等. 衡水市桃城区浅层高氟地下水水化学特征与成因分析[J]. 科学技术与工程, 2021, 21(24): 10191-10198. doi: 10.3969/j.issn.1671-1815.2021.24.013

    CrossRef Google Scholar

    Zhang H S, Cai W T, Bian C, et al. Hydrochemical characteristics and genetic analysis of shallow high-fluorine groundwater in Taocheng District, Hengshui City[J]. Science Technology and Engineering, 2021, 21(24): 10191-10198. doi: 10.3969/j.issn.1671-1815.2021.24.013

    CrossRef Google Scholar

    [19] 申月芳, 马晗宇, 杨耀栋, 等. 武清凹陷浅层含氟地下水演化特点及成因分析[J]. 物探与化探, 2021, 45(2): 528-535.

    Google Scholar

    Shen Y F, Ma H Y, Yang Y D, et al. Evolution characteristics and genesis of shallow fluorine-bearing groundwater in Wuqing Sag[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 528-535.

    Google Scholar

    [20] 黄冠星, 孙继朝, 荆继红, 等. 珠江三角洲典型区水土中砷的分布[J]. 中山大学学报(自然科学版), 2010, 49(1): 131-137.

    Google Scholar

    Huang G X, Sun J C, Jing J H, et al. Distribution of arsenic in water and soil in the representative area of the Pearl River Delta[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1): 131-137.

    Google Scholar

    [21] 朱其顺, 许光泉. 中国地下水氟污染的现状及研究进展[J]. 环境科学与管理, 2009(1): 42-44, 51. doi: 10.3969/j.issn.1673-1212.2009.01.012

    CrossRef Google Scholar

    Zhu Q X, Xu G Q. The current situation and research progress of ground water fluorine pollution, in China[J]. Environmental Science and Management, 2009(1): 42-44, 51. doi: 10.3969/j.issn.1673-1212.2009.01.012

    CrossRef Google Scholar

    [22] Guo H M, Yang S Z, Tang X H, et al. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia[J]. Science of The Total Environment, 2008, 393(1): 131-144. doi: 10.1016/j.scitotenv.2007.12.025

    CrossRef Google Scholar

    [23] 曹文庚, 董秋瑶, 谭俊, 等. 河套盆地晚更新世以来黄河改道对高砷地下水分布的控制机制[J]. 南水北调与水利科技, 2021, 19(1): 140-150.

    Google Scholar

    Cao W G, Dong Q Y, Tan J, et al. Mechanism of Yellow River diversion in controlling high arsenic groundwater distribution since Late Pleistocene[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(1): 140-150.

    Google Scholar

    [24] 王喜宽, 黄增芳, 赵锁志, 等. 河套地区盐碱化和砷氟中毒问题探讨[J]. 岩矿测试, 2007, 26(4): 328-330. doi: 10.3969/j.issn.0254-5357.2007.04.017

    CrossRef Google Scholar

    Wang X K, Huang Z F, Zhao S Z, et al. A preliminary study on soil salification and arseniasis-fluorosis in Hetao area[J]. Rock and Mineral Analysis, 2007, 26(4): 328-330. doi: 10.3969/j.issn.0254-5357.2007.04.017

    CrossRef Google Scholar

    [25] 赵锁志, 王喜宽, 黄增芳, 等. 内蒙古河套地区高氟水成因分析[J]. 岩矿测试, 2007, 26(4): 320-324. doi: 10.3969/j.issn.0254-5357.2007.04.015

    CrossRef Google Scholar

    Zhao S Z, Wang X K, Huang Z F, et al. Study on formation causes of high fluorine groundwater in Hetao area of Inner Mongolia[J]. Rock and Mineral Analysis, 2007, 26(4): 320-324. doi: 10.3969/j.issn.0254-5357.2007.04.015

    CrossRef Google Scholar

    [26] 韩双宝, 李甫成, 王赛, 等. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 2021, 48(4): 1001-1019.

    Google Scholar

    Han S B, Li F C, Wang S, et al. Groundwater resource and eco-environmental problem of the Yellow River Basin[J]. Geology in China, 2021, 48(4): 1001-1019.

    Google Scholar

    [27] Banning A. Geogenic arsenic and uranium in Germany: Large-scale distribution control in sediments and groundwater[J]. Journal of Hazardous Materials, 2021, 405: 124186. doi: 10.1016/j.jhazmat.2020.124186

    CrossRef Google Scholar

    [28] 杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿测试, 2020, 39(4): 475-492.

    Google Scholar

    Yang W L, Shen Y T. A review of research progress on the absorption mechanism of arsenic and agronomic pathways to control arsenic absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492.

    Google Scholar

    [29] 吴昆明, 郭华明, 魏朝俊. 天然磁铁矿化学改性及其在水体除砷中的应用[J]. 岩矿测试, 2017, 36(1): 32-39.

    Google Scholar

    Wu K M, Guo H M, Wei C J. Chemical modification of natural magnetite and its application in arsenic removal from a water environment[J]. Rock and Mineral Analysis, 2017, 36(1): 32-39.

    Google Scholar

    [30] 王继华, 朱洪生, 潘登. 豫北平原地下水水化学和水质分布特征[J]. 水电能源科学, 2020, 38(12): 49-52.

    Google Scholar

    Wang J H, Zhu H S, Pan D. Hydrochemistry character-istics and water quality distribution of groundwater in North Henan Plain[J]. Water Resources and Power, 2020, 38(12): 49-52.

    Google Scholar

    [31] 仝长水, 吴继臣, 苗晋祥, 等. 豫北平原地下水开发利用与水质演化规律[J]. 水文地质工程地质, 2005(5): 13-16. doi: 10.3969/j.issn.1000-3665.2005.05.004

    CrossRef Google Scholar

    Tong C S, Wu J C, Miao J X, et al. A study of the development and water quality evolution of groundwater in the Northern Henan Plain[J]. Hydrogeology and Engineering Geology, 2005(5): 13-16. doi: 10.3969/j.issn.1000-3665.2005.05.004

    CrossRef Google Scholar

    [32] 左奎孟. 延津县氟(苦)水区状况及治理[J]. 灌溉排水学报, 2007, 26(4): 164-165.

    Google Scholar

    Zuo K M. Status and management of fluoride (bitter) water area in Yanjin County[J]. Journal of Irrigation and Drainage, 2007, 26(4): 164-165.

    Google Scholar

    [33] 芦天成, 何光星, 张明俊. 新乡市地方性砷中毒流行病学调查[J]. 河南预防医学杂志, 2010, 25(5): 290-291.

    Google Scholar

    Lu T C, He G X, Zhang M J. Epidemiological survey of endemic arsenism in Xinxiang City[J]. Henan Journal of Preventive Medicine, 2010, 25(5): 290-291.

    Google Scholar

    [34] 胡冰殊, 柳西亚, 王宁, 等. 河南省东部平原浅层地下水水质特征分析[J]. 地下水, 2021, 43(2): 33-36.

    Google Scholar

    Hu B S, Liu X Y, Wang N, et al. Analysis of groundwater quality in the shallow aquifers of the east plain in Henan[J]. Ground Water, 2021, 43(2): 33-36.

    Google Scholar

    [35] Cao W G, Guo H M, Zhang Y L, et al. Controls of paleo-channels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of The Total Environment, 2017, 613-614(1): 958-968.

    Google Scholar

    [36] Gibbs R J. Mechanisms of controlling world water chemistry[J]. Science, 1970, 170: 1088-1090. doi: 10.1126/science.170.3962.1088

    CrossRef Google Scholar

    [37] 柳凤霞, 史紫薇, 钱会, 等. 银川地区地下水水化学特征演化规律及水质评价[J]. 环境化学, 2019, 38(9): 2055-2066.

    Google Scholar

    Liu F X, Shi Z W, Qian H, et al. Evolution of groundwater hydrochemical characteristics and water quality evaluation in Yinchuan area[J]. Environmental Chemistry, 2019, 38(9): 2055-2066.

    Google Scholar

    [38] 吴丁丁, 姚震, 贾凤超, 等. 新疆哈密盆地地下水水化学特征及成因分析[J]. 干旱区资源与环境, 2020.34(7): 133-141.

    Google Scholar

    Wu D D, Yao Z, Jia F C, et al. Hydro-geochemical characteristics and genetic analysis of groundwater in Hami Basin, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(7): 133-141.

    Google Scholar

    [39] Huq M E, Su C L, Fahad S, et al. Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh)[J]. Environmental Science & Pollution Research, 2018, 25(16): 15830-15843.

    Google Scholar

    [40] 李巧, 周金龙, 曾妍妍. 奎屯河及玛纳斯河流域平原区地下水中氮素对砷迁移富集的影响[J]. 环境化学, 2017, 36(10): 2227-2234. doi: 10.7524/j.issn.0254-6108.2017021307

    CrossRef Google Scholar

    Li Q, Zhou J L, Zeng Y Y. Effects of nitrogens on the migration and enrichment of arsenic in the groundwater in the plain area of Kuitun River and Manas River Basin[J]. Environmental Chemistry, 2017, 36(10): 2227-2234. doi: 10.7524/j.issn.0254-6108.2017021307

    CrossRef Google Scholar

    [41] Omolola A A, Reda M A, Jeffrey S H, et al. Pleistocene sands of the Mississippi River Alluvial Aquifer produce the highest groundwater arsenic concentrations in southern Louisiana, USA[J]. Journal of Hydrology, 2021, 595: 125995. doi: 10.1016/j.jhydrol.2021.125995

    CrossRef Google Scholar

    [42] Haugen E A, Jurgens B C, Arroyo-Lopez J A, et al. Groundwater development leads to decreasing arsenic concentrations in the San Joaquin Valley, California[J]. Science of The Total Environment, 2021, 771: 145223. doi: 10.1016/j.scitotenv.2021.145223

    CrossRef Google Scholar

    [43] 张景涛, 史浙明, 王广才, 等. 柴达木盆地大柴旦地区地下水水化学特征及演化规律[J]. 地学前缘, 2021, 28(4): 194-205.

    Google Scholar

    Zhang J T, Shi Z M, Wang G C, et al. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin[J]. Earth Science Frontiers, 2021, 28(4): 194-205.

    Google Scholar

    [44] 宋晨, 马斌, 梁杏, 等. 玛纳斯河流域山前平原地下水水化学特征与补给来源[J]. 干旱区资源与环境, 2021, 35(1): 160-168.

    Google Scholar

    Song C, Ma B, Liang X, et al. Hydrochemical characteristics and recharge of groundwater in piedmont plain in the Manas River Basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(1): 160-168.

    Google Scholar

    [45] Wang Y X, Li J X, Ma T, et al. Genesis of geogenic contaminated groundwater: As, F and I[J]. Critical Reviews in Environmental Science and Technology, 2020. http://dx.doi.org/10.1080/10643389.2020.1807452.

    Google Scholar

    [46] 刘圣锋, 高柏, 张海阳, 等. 海拉尔盆地地下水氟的分布特征及富集机理[J]. 干旱区资源与环境, 2021, 35(10): 169-177.

    Google Scholar

    Liu S F, Gao B, Zhang H Y, et al. Distribution characteristics and enrichment mechanism of groundwater fluorine in Hailaer Basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(10): 169-177.

    Google Scholar

    [47] 吕晓立, 刘景涛, 朱亮, 等. 甘肃省秦王川盆地地下水氟富集特征及影响因素[J]. 干旱区资源与环境, 2020, 34(3): 188-195.

    Google Scholar

    Lv X L, Liu J T, Zhu L, et al. Evolution feature and gensis of fluoride groundwater in shallow aquifer from Qin Wangchuan Basin[J]. Journal of Arid Land Resources and Environment, 2020, 34(3): 188-195.

    Google Scholar

    [48] 张茂增. 黄土的活性氟与黄土中地下水含氟量[J]. 第四纪研究, 1986(1): 28-32.

    Google Scholar

    Zhang M Z. Active fluorine in loess and fluoride content in groundwater of loess[J]. Quaternary Sciences, 1986(1): 28-32.

    Google Scholar

    [49] Li J X, Wang Y X, Xie X J, et al. Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2012, 118: 77-89. doi: 10.1016/j.gexplo.2012.05.002

    CrossRef Google Scholar

    [50] 刘文波. 河套平原地下水化学特征研究[D]. 北京: 中国地质大学(北京), 2015.

    Google Scholar

    Liu W B. Groundwater hydro-chemical characteristic study in Hetao Plain[D]. Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(2451) PDF downloads(220) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint