Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 6
Article Contents

XIA Yan, SONG Yan-bin, HOU Jin-kai, ZHAO Rui, WANG Xi-kuan. Distribution Law and Influencing Factors of Molybdenum in Soils and Crops in Luoyang, Henan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 820-832. doi: 10.15898/j.cnki.11-2131/td.202104130052
Citation: XIA Yan, SONG Yan-bin, HOU Jin-kai, ZHAO Rui, WANG Xi-kuan. Distribution Law and Influencing Factors of Molybdenum in Soils and Crops in Luoyang, Henan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 820-832. doi: 10.15898/j.cnki.11-2131/td.202104130052

Distribution Law and Influencing Factors of Molybdenum in Soils and Crops in Luoyang, Henan Province

More Information
  • BACKGROUND

    Molybdenum is an essential and beneficial element for humans and crops and has an anti-cancer effect. The content of molybdenum and the pH of the soils are different in different regions, the content of molybdenum in crops varies greatly. At the same time, different crops have a different absorption ability of molybdenum. Studying the rules of molybdenum enrichment in different crops provides a basis for the development of healthy geology, the development of molybdenum-rich agricultural products, the development of functional agriculture, and the adjustment of planting structure.

    OBJECTIVES

    To investigate Mo content in different crops and their controlling factors.

    METHODS

    This study used the detailed survey area of selenium resources in Luoyang City and other agricultural planting areas as the research object. By collecting 22 kinds of crops and their root soils, inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine the molybdenum content in soils and crops, and the characteristics and influencing factors of the content of molybdenum in different crops were studied.

    RESULTS

    The content of molybdenum in the soil of Luoyang City was relatively high, which was the characteristic area of molybdenum-rich soil in China. Mung bean, cowpea, black bean, yellow bean, red bean and peanuts were the main molybdenum enrichment crops, with average >9mg/kg molybdenum content and enrichment factor >500%, which belonged to the molybdenum hyperaccumulator. Sesame, long bean, millet, wheat, corns and rapeseed had high molybdenum content, which ranged from 0.446mg/kg to 2.437mg/kg, and the enrichment coefficient ranged from 40% to 300%, which were molybdenum rich crops. The content of molybdenum in chili, garlic, sweet potatoes and okra ranged from 0.1mg/kg to 0.3mg/kg, and the enrichment factor ranged from 10% to 30%, which were high-molybdenum crops. The content of molybdenum in apple, pear, grape, pomegranate, cherry and Stachys floridana Schuttl.ex Benth was less than 0.05mg/kg, and the enrichment factor was less than 5%, which was a low-molybdenum crop. The content of molybdenum in most crops was positively correlated with that in root soils, while the content of molybdenum in apple, grape, pomegranate, and cherry was negatively correlated within the molybdenum content in the root soils.

    CONCLUSIONS

    Studies have shown that molybdenum in soils is more easily absorbed by crops under an alkaline environment. Compared with other areas in China, the crop in the area is richer in molybdenum, so it is a favorable area for the development of a molybdenum-rich agricultural industry. According to the molybdenum content of different crops, mung bean, cowpea, black bean, yellow bean, red bean and peanuts were selected as the characteristic Mo-rich agricultural products in the study area; sesame, long bean, millet, wheat, corns and rapeseed were Mo-rich agricultural products; pepper, garlic, sweet potato and okra were high Mo agricultural products. The results provide a scientific basis for the development and adjustment of the molybdenum-rich agricultural product planting structure in the study area.

  • 加载中
  • [1] 胡相红. 微量元素钼与人类健康[J]. 现代预防医学, 2001, 28(3): 353-355. doi: 10.3969/j.issn.1003-8507.2001.03.033

    CrossRef Google Scholar

    Hu X H. Essential trace element molybdenum of human body and human health[J]. Modern Preventive Medicine, 2001, 28(3): 353-355. doi: 10.3969/j.issn.1003-8507.2001.03.033

    CrossRef Google Scholar

    [2] Vishwanath M S. Molybdenum: An essential trace element[J]. Nutrition in Clinical Practice, 1993, 8(6): 277-281. doi: 10.1177/0115426593008006277

    CrossRef Google Scholar

    [3] 杨自军, 龙塔, 冉林武, 等. 钼的生物学功能及其在动物生产中的作用[J]. 河南科技大学学报(农学版), 2004, 24(2): 40-42.

    Google Scholar

    Yang Z J, Long T, Ran L W, et al. Molybdenum's biological function and roles in animal production[J]. Journal of Henan University of Science and Technology (Agricultural Science), 2004, 24(2): 40-42.

    Google Scholar

    [4] 曾昭华, 曾雪萍. 中国癌症与土壤中钼元素的关系[J]. 农村生态环境, 2000, 16(2): 60-61.

    Google Scholar

    Zeng Z H, Zeng X P. Cancer and soil Mo in China[J]. Rural Eco-Environment, 2000, 16(2): 60-61.

    Google Scholar

    [5] 吴磊, 曹光辉, 颜世铭, 等. 微量元素钼与胃癌关系研究[J]. 微量元素与健康研究, 1996, 13(3): 1-2.

    Google Scholar

    Wu L, Cao G H, Yan S M, et al. Investigation on the relationship between trace element Mo and gastric cancer[J]. Studies of Trace Elements and Health, 1996, 13(3): 1-2.

    Google Scholar

    [6] 韩冰, 张菁华. 钼的生物学作用及钼缺乏对生物体的影响[J]. 菏泽医学专科学校学报, 2009, 21(1): 73-74. doi: 10.3969/j.issn.1008-4118.2009.01.035

    CrossRef Google Scholar

    Han B, Zhang J H. The biological function of molybdenum and the effect of molybdenum deficiency on the organism[J]. Journal of Heze Medical College, 2009, 21(1): 73-74. doi: 10.3969/j.issn.1008-4118.2009.01.035

    CrossRef Google Scholar

    [7] 韦友欢, 黄秋婵. 钼对人体健康的生理效应及其机制研究[J]. 广西民族师范学院学报, 2010, 27(5): 10-12. doi: 10.3969/j.issn.1674-8891.2010.05.004

    CrossRef Google Scholar

    Wei Y H, Huang Q C. Physiological effects and mechanism of molybdenum on human health[J]. Journal of Guangxi Normal University for Nationalites, 2010, 27(5): 10-12. doi: 10.3969/j.issn.1674-8891.2010.05.004

    CrossRef Google Scholar

    [8] 王丽, 郭锋. 生物微量元素钼与人体健康[J]. 化学世界, 2000(8): 446-448. doi: 10.3969/j.issn.0367-6358.2000.08.017

    CrossRef Google Scholar

    Wang L, Guo F. Biological trace element molybdenum and human health[J]. Chemistry World, 2000(8): 446-448. doi: 10.3969/j.issn.0367-6358.2000.08.017

    CrossRef Google Scholar

    [9] 刘牧. 钼对人体健康的影响[J]. 中国钼业, 2001, 25(5): 43-45. doi: 10.3969/j.issn.1006-2602.2001.05.012

    CrossRef Google Scholar

    Liu M. The effect of Mo on human health[J]. China Molybdenum Industry, 2001, 25(5): 43-45. doi: 10.3969/j.issn.1006-2602.2001.05.012

    CrossRef Google Scholar

    [10] Janssen K A, Vitosh M L. Effect of lime, sulfur, and molybdenum on N2 fixation and yield of dark red kidney beans[J]. Agronomy Journal, 1974, 66(6): 736-740. doi: 10.2134/agronj1974.00021962006600060008x

    CrossRef Google Scholar

    [11] Hashimoto K, Yamasaki S. Effects of molybdenum application on the yield, nitrogen nutrition and nodule development of soybeans[J]. Soil Science and Plant Nutrition, 1976, 22(4): 435-443. doi: 10.1080/00380768.1976.10433005

    CrossRef Google Scholar

    [12] Yang M, Shi L, Xu F, et al. Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L. )[J]. Pedosphere, 2009, 19(1): 53-59. doi: 10.1016/S1002-0160(08)60083-1

    CrossRef Google Scholar

    [13] Kandil H, Gad N, Abdelhamid M T. Effects of different rates of phosphorus and molybdenum application on two varieties common bean of (Phaseolus vulgaris L. )[J]. Journal of Agricultural and Food Chemistry, 2013, 3(3): 8-16.

    Google Scholar

    [14] Ahmad J, Anwar S, Shad A A, et al. Yield and nutritional status of mungbean as influenced by molybdenum and phosphorus[J]. Pakistan Journal of Agricultural Research, 2021, 34(1): 144-153.

    Google Scholar

    [15] 李芳亭, 鲁强, 王世国, 等. 黄土丘陵区土壤钼锌含量及农作物对钼锌的反应[J]. 农业环境保护, 2002, 21(6): 559-561.

    Google Scholar

    Li F T, Lu Q, Wang S G. et al. Concentration of molybdenum and zinc in soil of upland of loess and response of crops[J]. Agro-Environmental Protection, 2002, 21(6): 559-561.

    Google Scholar

    [16] 董玉明, 张建明. 施用硼、钼对蚕豆生长发育及产量的影响[J]. 安徽农业科学, 2003, 31(1): 152-153. doi: 10.3969/j.issn.0517-6611.2003.01.081

    CrossRef Google Scholar

    Dong Y M, Zhang J M. Effects of application of boron and molybdenum on growth and yield of broad bean[J]. Journal of Anhui Agricultural Sciences, 2003, 31(1): 152-153. doi: 10.3969/j.issn.0517-6611.2003.01.081

    CrossRef Google Scholar

    [17] 周苏玫, 樊骅, 郭俊红, 等. 有机肥及锌硼钼微肥对花生产量和品质的影响[J]. 河南农业大学学报, 2003, 37(4): 335-338. doi: 10.3969/j.issn.1000-2340.2003.04.006

    CrossRef Google Scholar

    Zhou S M, Fan H, Guo J H, et al. Effects of organic manure and microelement fertilizer on the output and quality of peanut[J]. Journal of Henan Agricultural University, 2003, 37(4): 335-338. doi: 10.3969/j.issn.1000-2340.2003.04.006

    CrossRef Google Scholar

    [18] 杜应琼, 廖新荣, 何江华, 等. 施用硼钼对花生生长发育和产量的影响[J]. 植物营养与肥料学报, 2002, 8(2): 229-233. doi: 10.3321/j.issn:1008-505X.2002.02.019

    CrossRef Google Scholar

    Du Y Q, Liao X R, He J H, et al. Effects of boron and molybdenum on growth and yield of peanut[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 229-233. doi: 10.3321/j.issn:1008-505X.2002.02.019

    CrossRef Google Scholar

    [19] 蔡妙珍, 刘鹏, 徐根娣, 等. 钼、锰营养对大豆碳氮代谢的影响[J]. 土壤学报, 2008, 45(1): 180-183. doi: 10.3321/j.issn:0564-3929.2008.01.025

    CrossRef Google Scholar

    Cai M Z, Liu P, Xu G D, et al. Effect of molybdenum and manganese application on metabolism of carbon and nitrogen in soybean[J]. Acta Pedologica Sinica, 2008, 45(1): 180-183. doi: 10.3321/j.issn:0564-3929.2008.01.025

    CrossRef Google Scholar

    [20] 张剑, 唐莜春, 陈军响. 镁硼锌钼营养对大棚番茄品质与产量的影响[J]. 浙江农业科学, 2009(5): 879-881. doi: 10.3969/j.issn.0528-9017.2009.05.009

    CrossRef Google Scholar

    Zhang J, Tang Y C, Chen J X. Effects of magnesium, boron, zinc and molybdenum nutrition on quality and yield of tomato in greenhouse[J]. Journal of Zhejiang Agricultural Sciences, 2009(5): 879-881. doi: 10.3969/j.issn.0528-9017.2009.05.009

    CrossRef Google Scholar

    [21] 吴拓, 杨刘, 降志兵. 钼锌硼微量元素对大豆产量和品质的影响[J]. 南方农业, 2015, 31(9): 6-8.

    Google Scholar

    Wu T, Yang L, Jiang Z B. Effect of trace elements of molybdenum, zinc and boron on yield and quality of soybean[J]. South China Agriculture, 2015, 31(9): 6-8.

    Google Scholar

    [22] 李珊, 张浩, 李启权, 等. 广元植烟土壤有效态微量元素的空间变异特征及影响因素[J]. 核农学报, 2017, 31(8): 1618-1625.

    Google Scholar

    Li S, Zhang H, Li Q Q, et al. Spatial variability of soil available microelement contents and their influencing factors in tobacco growing area in Guangyuan City[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(8): 1618-1625.

    Google Scholar

    [23] 穆童, 卢秀萍, 许自成, 等. 罗平烟区土壤有效硼、钼含量与烟叶硼、钼含量的关系分析[J]. 中国土壤与肥料, 2017(6): 44-50.

    Google Scholar

    Mu T, Lu X P, Xu Z C, et al. The relationship between the contents of available boron and available molybdenum in soil with the contents of boron and molybdenum of tobacco leaf in Luoping[J]. Soil and Fertilizer Sciences in China, 2017(6): 44-50.

    Google Scholar

    [24] 彭月月, 余雪莲, 李启权, 等. 川西南高海拔烟区土壤微量元素空间分布特征及影响因素[J]. 中国烟草科学, 2018, 39(3): 39-47.

    Google Scholar

    Peng Y Y, Yu X L, Li Q Q, et al. Spatial distribution and influencing factors of soil available microelements in high altitude tobacco planting areas in southwest Sichuan[J]. Chinese Tobacco Science, 2018, 39(3): 39-47.

    Google Scholar

    [25] 刘勇军, 段淑辉, 彭曙光, 等. 常德植烟土壤微量元素丰缺状况及管理建议[J]. 湖南农业科学, 2019(4): 41-44, 47.

    Google Scholar

    Liu Y J, Duan S H, Peng S G, et al. Trace elements deficiency assessment and management suggestion of tobacco planting soil in Changde[J]. Hunan Agricultural Sciences, 2019(4): 41-44, 47.

    Google Scholar

    [26] 李良木, 温心怡, 卢秀萍, 等. 曲靖中海拔烟区土壤-烤烟钼含量状况及对烟叶感官质量的影响[J]. 中国土壤与肥料, 2019(2): 145-151.

    Google Scholar

    Li L M, Wen X Y, Lu X P, et al. The status of molybdenum in flue-cured tobacco and soil and its effects on tobacco quality in Qujing tobacco growing area[J]. Soil and Fertilizer Sciences in China, 2019(2): 145-151.

    Google Scholar

    [27] 胡瑞文, 刘勇军, 唐春闺, 等. 稻作烟区土壤硼钼养分垂直分布及与有机质的关系[J]. 中国烟草科学, 2020, 41(3): 9-15.

    Google Scholar

    Hu R W, Liu Y J, Tang C G, et al. Vertical distribution of boron and molybdenum in soil and their relationship with organic matter in paddy-tobacco growing areas[J]. Chinese Tobacco Science, 2020, 41(3): 9-15.

    Google Scholar

    [28] 刘崴, 胡俊栋, 杨红霞, 等. 电感耦合等离子体质谱联用技术在元素形态分析中的应用进展[J]. 岩矿测试, 2021, 40(3): 327-339.

    Google Scholar

    Liu W, Hu J D, Yang H X, et al. Research progress on elemental speciation analysis by inductively coupled plasma-mass spectrometry hyphenated techniques[J]. Rock and Mineral Analysis, 2021, 40(3): 327-339.

    Google Scholar

    [29] 齐亚彬. 坚决贯彻五中全会精神, 全力推进健康地质工作[N]. 中国矿业报, 2020-12-7(1).

    Google Scholar

    Qi Y B. Resolutely implement the spirit of the fifth plenary session, to promote healthy geological work[N]. China Mining News, 2020-12-7(1).

    Google Scholar

    [30] 王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423.

    Google Scholar

    Wang X Q, Liu Q Q, Liu H L, et al. Key elements and human health: Is China's arable land selenium-deficient?[J]. Earth Science Frontiers, 2021, 28(3): 412-423.

    Google Scholar

    [31] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020: 17.

    Google Scholar

    Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical dataset of China[M]. Beijing: Geological Publishing House, 2020: 17.

    Google Scholar

    [32] 廖启林, 刘聪, 蔡玉曼, 等. 江苏典型地区水稻与小麦籽实中元素生物富集系数(BCF)初步研究[J]. 中国地质, 2013, 40(1): 331-340.

    Google Scholar

    Liao Q L, Liu C, Cai Y M, et al. A preliminary study of element bioconcentration factors within milled rice and wheatmeal in some typical areas of Jiangsu Province[J]. Geology in China, 2013, 40(1): 331-340.

    Google Scholar

    [33] 贾婷. 不同作物对土壤钼富集规律的研究[D]. 福州: 福建农林大学, 2014: 32-33.

    Google Scholar

    Jia T. Study on molybdenum enrichment regularity in soil by different crops[D]. Fuzhou: Fujian Agriculture and Forestry Universtity, 2014: 32-33.

    Google Scholar

    [34] 彭珊珊, 张霖霖, 黄婷. 豆制品中钼的分析研究[J]. 食品科学, 2002, 23(8): 210-211.

    Google Scholar

    Peng S S, Zhang L L, Huang T. Analysis of molybdenum in soybean products[J]. Food Science, 2002, 23(8): 210-211.

    Google Scholar

    [35] 王振权, 张育华, 陈二钦, 等. 广西常用饲料、牧草中铜、锌、铁、锰、钴、钼含量的初步调查[J]. 广西农业大学学报, 1992, 11(4): 53-58.

    Google Scholar

    Wang Z Q, Zhang Y H, Chen E Q, et al. Investigations on the contents of Cu, Zn, Fe, Mn, Co, Mo of feedstuffs and forages in Guangxi[J]. Journal of Guangxi Agricultural University, 1992, 11(4): 53-58.

    Google Scholar

    [36] 李芳亭. 延安地区农作物施钼与人体健康的关系[J]. 农业环境保护, 1994, 13(5): 68-69.

    Google Scholar

    Li F T. Relationship between molybdenum application to crops and human health in Yanan area[J]. Agro-Environmental Protection, 1994, 13(5): 68-69.

    Google Scholar

    [37] 王振林. 冬小麦微量元素吸收特点的研究[J]. 山东农业大学学报, 1989(3): 27-32.

    Google Scholar

    Wang Z L. A study on the absorption of micronutrients by winter wheat[J]. Journal of Shandong Agricultural University, 1989(3): 27-32.

    Google Scholar

    [38] 陈祥友. 不同产地小麦33种元素分析[J]. 世界元素医学, 2011, 18(3-4): 36-37.

    Google Scholar

    Chen X Y. Analysis of 33 elements in wheat from different areas[J]. World Elemental Medicine, 2011, 18(3-4): 36-37.

    Google Scholar

    [39] 曹淑萍, 卢煜文. 微量元素Mo对宝坻大蒜生长的影响研究[J]. 天津农业科学, 2011, 18(1): 106-108.

    Google Scholar

    Cao S P, Lu Y W. Effect of Mo on the growth of Baodi garlic[J]. Tianjin Agricultural Sciences, 2011, 18(1): 106-108.

    Google Scholar

    [40] 王恕. 23种中国和法国小麦及小麦面粉样品中九种元素的分析[J]. 广东微量元素科学, 1999, 6(4): 54-58.

    Google Scholar

    Wang S. Analysis on 9 trace elements in 23 kinds of wheat and wheat flour from China and France[J]. Guangdong Trace Elements Science, 1999, 6(4): 54-58.

    Google Scholar

    [41] 王夔. 生命科学中的微量元素分析与数据手册[M]. 北京: 中国计量出版社, 1998: 156, 360-378.

    Google Scholar

    Wang K. Trace element analysis and data handbook in the life science[M]. Beijing: Chinese Metrology Press, 1998: 156, 360-378.

    Google Scholar

    [42] Hiroyuki H, Akane A, Chic I, et al. Determination of mo-lybdenum in foods and human milk, and an estimate of average molybdenum intake in the Japanese population[J]. Journal of Nutritional Science and Vitaminology, 2004, 50(6): 404-409.

    Google Scholar

    [43] Choi M, Kang M, Kim M. The analysis of copper, sele-nium, and molybdenum contents in frequently consumed foods and an estimation of their daily intake in Korean adults[J]. Biological Trace Element Research, 2009, 128(2): 104-117. doi: 10.1007/s12011-008-8260-2

    CrossRef Google Scholar

    [44] 叶欣, 郭雅玲, 王果, 等. 福建省铁观音茶园土壤钼含量状况调查与分析[J]. 植物营养与肥料学报, 2011, 17(6): 1372-1378.

    Google Scholar

    Ye X, Guo Y L, Wang G, et al. Investigation and analysis of soil molybdenum in the Tieguanyin tea plantations of Fujian Province[J]. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1372-1378.

    Google Scholar

    [45] 施宪, 王冬艳, 李月芬, 等. 吉林西部锰、钼元素土壤地球化学特征[J]. 世界地质, 2010, 29(2): 256-261.

    Google Scholar

    Shi X, Wang D Y, Li Y F, et al. Soil geochemical characteristics of elements Mn, Mo in western Jilin Province[J]. Global Geology, 2010, 29(2): 256-261.

    Google Scholar

    [46] 曾昭华. 农业生态与土壤环境中钼元素的关系[J]. 湖南地质, 2000, 19(3): 149-150.

    Google Scholar

    Zeng Z H. Relationship between agroecology and molybdenum in soil environment[J]. Hunan Geology, 2000, 19(3): 149-150.

    Google Scholar

    [47] 刘铮, 朱其清, 徐俊祥, 等. 中国土壤中钼的含量与分布规律[J]. 环境科学学报, 1990, 10(2): 132-137.

    Google Scholar

    Liu Z, Zhu Q Q, Xu J X, et al. Contents and distribution of Mo in soils of China[J]. Acta Scientiae Circumstantiae, 1990, 10(2): 132-137.

    Google Scholar

    [48] 张璐, 蔡泽江, 王慧颖, 等. 中国稻田土壤有效态中量和微量元素含量分布特征[J]. 农业工程学报, 2020, 36(16): 62-70.

    Google Scholar

    Zhang L, Cai Z J, Wang H Y. Distribution characteristics of effective medium and micronutrient element contents in paddy soils of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 62-70.

    Google Scholar

    [49] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336.

    Google Scholar

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(7)

Article Metrics

Article views(2626) PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint