Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 2
Article Contents

LI Fangzhou, LI Xiaoli. Parameters of Electron Probe Microanalysis for Na and K in Silicate Glass[J]. Rock and Mineral Analysis, 2022, 41(2): 161-173. doi: 10.15898/j.cnki.11-2131/td.202108180100
Citation: LI Fangzhou, LI Xiaoli. Parameters of Electron Probe Microanalysis for Na and K in Silicate Glass[J]. Rock and Mineral Analysis, 2022, 41(2): 161-173. doi: 10.15898/j.cnki.11-2131/td.202108180100

Parameters of Electron Probe Microanalysis for Na and K in Silicate Glass

More Information
  • BACKGROUND

    The precise measurement for Na and K in silicate glass is usually difficult in electron probe microanalysis (EPMA). Ti-containing silicate glass has an important value in basic scientific research and application technology development, and it is urgent to carry out accurate composition analysis to provide important data support for further scientific research work. The glass is of amorphous form and damageable under electron bombardment. Moreover, the alkali Na and K elements can easily diffuse and migrate during the electron bombing. Therefore, it is often necessary to set the appropriate analysis conditions through conditional experiments to ensure that the sample can be kept as stable as possible under these conditions, so that relatively accurate quantitative analysis results can be obtained.

    OBJECTIVES

    To determine the proper analytical conditions for Na and K analyses in the silicate glass.

    METHODS

    Electron probe quantitative analyses for Na and K were performed in the synthetized silicate glass samples of NTS (Na2O-TiO2-SiO2) and KTS (K2O-TiO2-SiO2). By changing the probe diameter (10-100μm), beam current (3nA, 5nA and 10nA) and count time (10s, 20s, 30s and 40s) orderly in a series of experiments, the optimal analytical conditions for accurate quantitative results were established.

    RESULTS

    The results showed a systematic change with positive trend of Na, K, Si and Ti contents with probe diameter and count time increases, but a contrasting trend for beam current. In most cases, the conditions of larger probe diameter up to 80-100μm and lower beam current (3nA or 5nA) provided the highest Na or K content that maximumly approaches the normal value before synthesis. This was different from the previous glass analysis conditions, which may be related to the high Na, K and Ti content of the samples. In grid analysis for elemental map modeling, certain correlation(s) among Na, K, Si and Ti were revealed, which provided further perspectives for potential chemical bonds, i.e. crystallochemical structure of the sample.

    CONCLUSIONS

    A larger probe diameter of 100μm and lower beam current of 3-5nA for Na and K analyses in silicate glass are recommended for optimum analysis.

  • 加载中
  • [1] 周剑雄, 毛水和. 电子探针分析[M]. 北京: 地质出版社, 1988.

    Google Scholar

    Zhou J X, Mao S H. Electron microprobe analysis[M]. Beijing: Geological Publishing House, 1988.

    Google Scholar

    [2] 徐萃章. 电子探针分析原理[M]. 北京: 科学出版社, 1990.

    Google Scholar

    Xu C Z. The principle of electron microprobe analysis[M]. Beijing: Geological Publishing House, 1990.

    Google Scholar

    [3] 胡志中, 李佩, 蒋璐蔓, 等. 古代玻璃材料LA-ICP-MS组分分析及产源研究[J]. 岩矿测试, 2020, 39(4): 505-514.

    Google Scholar

    Hu Z Z, Li P, Jiang L M, et al. Application of LA-ICP-MS in the analysis of archaeological glass and source discrimination[J]. Rock and Mineral Analysis, 2020, 39(4): 505-514.

    Google Scholar

    [4] 解未易, 沈彦, 李力力, 等. SIMS测定玻璃固化样品中铀分布的分析方法研究[J]. 岩矿测试, 2016, 35(6): 579-584.

    Google Scholar

    Xie W Y, Shen Y, Li L L, et al. Determination of the distribution of uranium in glass solidified samples by secondary ionization mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(6): 579-584.

    Google Scholar

    [5] 陈光. 新材料概论[M]. 北京: 科学出版社, 2003.

    Google Scholar

    Chen G. Introduction to new materials[M]. Beijing: Science Press, 2003.

    Google Scholar

    [6] Siivola J. On the evaporation of some alkali metals during the electron microprobe analysis[J]. Bulletin of Geological Society of Finland, 1969, 41: 85-91. doi: 10.17741/bgsf/41.009

    CrossRef Google Scholar

    [7] Howitt D G, Chan H W, DeNatale J F, et al. Mechanism for the radiolytically induced decomposition of soda-silicate glasses[J]. Journal of American Ceramic Society, 1991, 74(5): 1145-1147. doi: 10.1111/j.1151-2916.1991.tb04358.x

    CrossRef Google Scholar

    [8] 李香庭, 郭祝崑. 电子轰击下固体的Na+迁移[J]. 硅酸盐学报, 1984, 3(1): 9-12.

    Google Scholar

    Li X T, Guo Z K. Na+ migration under electron bombardment[J]. Bulletin of the Chinese Ceramic Society, 1984, 3(1): 9-12.

    Google Scholar

    [9] 李香庭. 不稳定样品的EPMA分析[J]. 电子显微学报, 1994, 13(1): 58-62.

    Google Scholar

    Li X T. EPMA analysis of the unstable sample[J]. Journal of Chinese Electron Microscopy Society, 1994, 13(1): 58-62.

    Google Scholar

    [10] Nielsen C H, Sigurdsson H. Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses[J]. American Mineralogist, 1981, 66(5-6): 547-552.

    Google Scholar

    [11] Jbara O, Cazaux J, Trebbia P. Sodium diffusion in glasses during electron irradiation[J]. Journal of Applied Physics, 1995, 78(2): 868-875. doi: 10.1063/1.360277

    CrossRef Google Scholar

    [12] Hunt J B, Hill P G. An inter-laboratory comparison of the electron probe microanalysis of glass geochemistry[J]. Quaternary International, 1996, 34-36: 229-241. doi: 10.1016/1040-6182(95)00088-7

    CrossRef Google Scholar

    [13] Malfait W, Sanchez-Vallea C, Ardia P, et al. Compo-sitional dependent compressibility of dissolved water in silicate glasses[J]. American Mineralogist, 2011, 96: 1402-1409. doi: 10.2138/am.2011.3718

    CrossRef Google Scholar

    [14] Seifert R, Malfait W J, Lerch P, et al. Partial molar volume and compressibility of dissolved CO2 in glasses with magmatic compositions[J]. Chemical Geology, 2013, 358: 119-130. doi: 10.1016/j.chemgeo.2013.09.007

    CrossRef Google Scholar

    [15] Malfait W J, Seiferta R, Petitgirard S, et al. The density of andesitic melts and the compressibility of dissolved water in silicate melts at crustal and upper mantle conditions[J]. Earth and Planetary Science Letters, 2014, 393: 31-38. doi: 10.1016/j.epsl.2014.02.042

    CrossRef Google Scholar

    [16] Zhang Y, Behrens H. H2O diffusion in rhyolitic melts and glasses[J]. Chemical Geology, 2000, 169(1-2): 243-262. doi: 10.1016/S0009-2541(99)00231-4

    CrossRef Google Scholar

    [17] Wu L, Yang D B, Liu J X, et al. A brillouin scattering study of hydrous basaltic glasses: The effect of H2O on their elastic behavior and implications for the densities of basaltic melts[J]. Physics and Chemistry of Minerals, 2017, 44: 431-444. doi: 10.1007/s00269-017-0870-9

    CrossRef Google Scholar

    [18] Li Z, Ding J, Ni H. Effect of alkalis on water diffusion in silicate melts based on new experimental data for a shoshonitic melt[J]. Geochemica et Cosmochimica Acta, 2020, 290: 16-26. doi: 10.1016/j.gca.2020.08.031

    CrossRef Google Scholar

    [19] 孙志华, 刘开平, 刘民武. 玄武岩玻璃的电子探针分析[J]. 岩矿测试, 2011, 30(4): 446-450. doi: 10.3969/j.issn.0254-5357.2011.04.011

    CrossRef Google Scholar

    Sun Z Y, Liu K P, Liu M W. Analysis of basalt glass by electron probe micro analyzer[J]. Rock and Mineral Analysis, 2011, 30(4): 446-450. doi: 10.3969/j.issn.0254-5357.2011.04.011

    CrossRef Google Scholar

    [20] 李小犁. 电子探针微量元素分析的一些思考[J]. 高校地质学报, 2021, 27(3): 306-316.

    Google Scholar

    Li X L. Several perspectives on microprobe trace elements analysis[J]. Geological Journal of China Universities, 2021, 27(3): 306-316.

    Google Scholar

    [21] 包志安, 袁洪林, 陈开运, 等. 高温熔融研制安山岩玻璃标准物质初探[J]. 岩矿测试, 2011, 30(5): 521-527.

    Google Scholar

    Bao Z A, Yuan H L, Chen K Y, et al. Primary research on a synthetic experimental method of Andesite standard glass references by using high-temperature fusion[J]. Rock and Mineral Analysis, 2011, 30(4): 521-527.

    Google Scholar

    [22] 宋佳瑶, 袁洪林, 包志安, 等. 高温熔融研制钾长石玻璃标准物质初探[J]. 岩矿测试, 2011, 30(4): 406-411. doi: 10.3969/j.issn.0254-5357.2011.04.005

    CrossRef Google Scholar

    Song J Y, Yuan H L, Bao Z A, et al. Preliminary research of K-feldspar glasses synthesis by high temperature melting[J]. Rock and Mineral Analysis, 2011, 30(4): 406-411. doi: 10.3969/j.issn.0254-5357.2011.04.005

    CrossRef Google Scholar

    [23] Morgan V G B, London D. Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses[J]. American Mineralogist, 1996, 81(9-10): 1176-1185. doi: 10.2138/am-1996-9-1016

    CrossRef Google Scholar

    [24] Morgan V G B, London D. Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses[J]. American Mineralogist, 2005, 90(7): 1131-1138. doi: 10.2138/am.2005.1769

    CrossRef Google Scholar

    [25] Zhang R, Yang S, Jiang S, et al. Effect of beam diameter on the accurate analysis of silicate glasses using electron probe microanalysis[J]. Microscopy and Microanalysis, 2019, 25(S2): 2362-2363. doi: 10.1017/S1431927619012546

    CrossRef Google Scholar

    [26] Spary J G, Rae D A. Quantitative electron-microprobe analysis of alkali silicate glasses: A review and user guide[J]. Canadian Mineralogist, 1995, 33(2): 323-332.

    Google Scholar

    [27] Buse B, Kearns S. Importance of carbon contamination in high-resolution (FEG) EPMA of silicate minerals[J]. Microscopy and Microanalysis, 2015, 21(3): 594-605. doi: 10.1017/S1431927615000288

    CrossRef Google Scholar

    [28] Vasamillet L F, Caldwell V F. Electron-probe microanalysis of alkali metals in glasses[J]. Journal of Applied Physics, 1969, 40: 1637-1643. doi: 10.1063/1.1657825

    CrossRef Google Scholar

    [29] Mitchell R H. Titaniferous phlogopites from the leucite-lamproites of the West Kimberley area, western Australia[J]. Contributions to Mineralogy and Petrology, 1981, 76: 243-251. doi: 10.1007/BF00371964

    CrossRef Google Scholar

    [30] Wagner C, Velde D. The mineralogy of K-richterite-bearing lamproites[J]. American Mineralogist, 1986, 7(1): 17-37.

    Google Scholar

    [31] Liu Q, Lange R A, Ai Y. Acoustic velocity measurements on Na2O-TiO2-SiO2 liquids: Evidence for a highly compressible TiO2 component related to five-coordinated Ti[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4314-4326. doi: 10.1016/j.gca.2007.06.054

    CrossRef Google Scholar

    [32] Bell E. Ancient magma sources revealed[J]. Nature Geosciences, 2017, 10: 397-398. doi: 10.1038/ngeo2955

    CrossRef Google Scholar

    [33] Singletary S, Grove T. Origin of lunar high-titanium ultramafic glasses: A hybridized source?[J]. Earth and Planetary Science Letters, 2008, 268(1-2): 182-189. doi: 10.1016/j.epsl.2008.01.019

    CrossRef Google Scholar

    [34] 欧阳自远, 邹永廖. 月球: 人类走向深空的前哨站[M]. 北京: 清华大学出版社, 2002.

    Google Scholar

    Ouyang Z Y, Zou Y L. Moon: The outpost to deep space[M]. Beijing: Tsinghua University Press, 2002.

    Google Scholar

    [35] Belyi Y I, Minakova N A, Zaichuk A V. On the structural units in titanium-containing glasses and their influence on the opacity of glass coatings[J]. Glass Physics & Chemistry, 2008, 34(3): 282-291.

    Google Scholar

    [36] Li X, Zhang L, Wei C, et al. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites[J]. Journal of Metamorphic Geology, 2018, 35: 1-22.

    Google Scholar

    [37] Liu Q, Lange R A. The partial molar volume and thermal expansivity of TiO2 in alkali silicate melts: Systematic variation with Ti coordination[J]. Geochimica et Cosmochimica Acta, 2001, 65(14): 2379-2393. doi: 10.1016/S0016-7037(01)00565-8

    CrossRef Google Scholar

    [38] 张文兰, 胡欢, 谢磊, 等. Na元素的EPMA定量分析: 矿物晶体结构对Na行为的制约[J]. 高校地质学报, 2021, 27(3): 327-339.

    Google Scholar

    Zhang W L, Hu H, Xie L, et al. Quantitative analysis of Na by EPMA: Constraints for the behavior of Na by the crystal structure[J]. Geological Journal of China Universities, 2021, 27(3): 327-339.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(2050) PDF downloads(58) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint