Citation: | LI Fangzhou, LI Xiaoli. Parameters of Electron Probe Microanalysis for Na and K in Silicate Glass[J]. Rock and Mineral Analysis, 2022, 41(2): 161-173. doi: 10.15898/j.cnki.11-2131/td.202108180100 |
The precise measurement for Na and K in silicate glass is usually difficult in electron probe microanalysis (EPMA). Ti-containing silicate glass has an important value in basic scientific research and application technology development, and it is urgent to carry out accurate composition analysis to provide important data support for further scientific research work. The glass is of amorphous form and damageable under electron bombardment. Moreover, the alkali Na and K elements can easily diffuse and migrate during the electron bombing. Therefore, it is often necessary to set the appropriate analysis conditions through conditional experiments to ensure that the sample can be kept as stable as possible under these conditions, so that relatively accurate quantitative analysis results can be obtained.
To determine the proper analytical conditions for Na and K analyses in the silicate glass.
Electron probe quantitative analyses for Na and K were performed in the synthetized silicate glass samples of NTS (Na2O-TiO2-SiO2) and KTS (K2O-TiO2-SiO2). By changing the probe diameter (10-100μm), beam current (3nA, 5nA and 10nA) and count time (10s, 20s, 30s and 40s) orderly in a series of experiments, the optimal analytical conditions for accurate quantitative results were established.
The results showed a systematic change with positive trend of Na, K, Si and Ti contents with probe diameter and count time increases, but a contrasting trend for beam current. In most cases, the conditions of larger probe diameter up to 80-100μm and lower beam current (3nA or 5nA) provided the highest Na or K content that maximumly approaches the normal value before synthesis. This was different from the previous glass analysis conditions, which may be related to the high Na, K and Ti content of the samples. In grid analysis for elemental map modeling, certain correlation(s) among Na, K, Si and Ti were revealed, which provided further perspectives for potential chemical bonds, i.e. crystallochemical structure of the sample.
A larger probe diameter of 100μm and lower beam current of 3-5nA for Na and K analyses in silicate glass are recommended for optimum analysis.
[1] | 周剑雄, 毛水和. 电子探针分析[M]. 北京: 地质出版社, 1988. Zhou J X, Mao S H. Electron microprobe analysis[M]. Beijing: Geological Publishing House, 1988. |
[2] | 徐萃章. 电子探针分析原理[M]. 北京: 科学出版社, 1990. Xu C Z. The principle of electron microprobe analysis[M]. Beijing: Geological Publishing House, 1990. |
[3] | 胡志中, 李佩, 蒋璐蔓, 等. 古代玻璃材料LA-ICP-MS组分分析及产源研究[J]. 岩矿测试, 2020, 39(4): 505-514. Hu Z Z, Li P, Jiang L M, et al. Application of LA-ICP-MS in the analysis of archaeological glass and source discrimination[J]. Rock and Mineral Analysis, 2020, 39(4): 505-514. |
[4] | 解未易, 沈彦, 李力力, 等. SIMS测定玻璃固化样品中铀分布的分析方法研究[J]. 岩矿测试, 2016, 35(6): 579-584. Xie W Y, Shen Y, Li L L, et al. Determination of the distribution of uranium in glass solidified samples by secondary ionization mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(6): 579-584. |
[5] | 陈光. 新材料概论[M]. 北京: 科学出版社, 2003. Chen G. Introduction to new materials[M]. Beijing: Science Press, 2003. |
[6] | Siivola J. On the evaporation of some alkali metals during the electron microprobe analysis[J]. Bulletin of Geological Society of Finland, 1969, 41: 85-91. doi: 10.17741/bgsf/41.009 |
[7] | Howitt D G, Chan H W, DeNatale J F, et al. Mechanism for the radiolytically induced decomposition of soda-silicate glasses[J]. Journal of American Ceramic Society, 1991, 74(5): 1145-1147. doi: 10.1111/j.1151-2916.1991.tb04358.x |
[8] | 李香庭, 郭祝崑. 电子轰击下固体的Na+迁移[J]. 硅酸盐学报, 1984, 3(1): 9-12. Li X T, Guo Z K. Na+ migration under electron bombardment[J]. Bulletin of the Chinese Ceramic Society, 1984, 3(1): 9-12. |
[9] | 李香庭. 不稳定样品的EPMA分析[J]. 电子显微学报, 1994, 13(1): 58-62. Li X T. EPMA analysis of the unstable sample[J]. Journal of Chinese Electron Microscopy Society, 1994, 13(1): 58-62. |
[10] | Nielsen C H, Sigurdsson H. Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses[J]. American Mineralogist, 1981, 66(5-6): 547-552. |
[11] | Jbara O, Cazaux J, Trebbia P. Sodium diffusion in glasses during electron irradiation[J]. Journal of Applied Physics, 1995, 78(2): 868-875. doi: 10.1063/1.360277 |
[12] | Hunt J B, Hill P G. An inter-laboratory comparison of the electron probe microanalysis of glass geochemistry[J]. Quaternary International, 1996, 34-36: 229-241. doi: 10.1016/1040-6182(95)00088-7 |
[13] | Malfait W, Sanchez-Vallea C, Ardia P, et al. Compo-sitional dependent compressibility of dissolved water in silicate glasses[J]. American Mineralogist, 2011, 96: 1402-1409. doi: 10.2138/am.2011.3718 |
[14] | Seifert R, Malfait W J, Lerch P, et al. Partial molar volume and compressibility of dissolved CO2 in glasses with magmatic compositions[J]. Chemical Geology, 2013, 358: 119-130. doi: 10.1016/j.chemgeo.2013.09.007 |
[15] | Malfait W J, Seiferta R, Petitgirard S, et al. The density of andesitic melts and the compressibility of dissolved water in silicate melts at crustal and upper mantle conditions[J]. Earth and Planetary Science Letters, 2014, 393: 31-38. doi: 10.1016/j.epsl.2014.02.042 |
[16] | Zhang Y, Behrens H. H2O diffusion in rhyolitic melts and glasses[J]. Chemical Geology, 2000, 169(1-2): 243-262. doi: 10.1016/S0009-2541(99)00231-4 |
[17] | Wu L, Yang D B, Liu J X, et al. A brillouin scattering study of hydrous basaltic glasses: The effect of H2O on their elastic behavior and implications for the densities of basaltic melts[J]. Physics and Chemistry of Minerals, 2017, 44: 431-444. doi: 10.1007/s00269-017-0870-9 |
[18] | Li Z, Ding J, Ni H. Effect of alkalis on water diffusion in silicate melts based on new experimental data for a shoshonitic melt[J]. Geochemica et Cosmochimica Acta, 2020, 290: 16-26. doi: 10.1016/j.gca.2020.08.031 |
[19] | 孙志华, 刘开平, 刘民武. 玄武岩玻璃的电子探针分析[J]. 岩矿测试, 2011, 30(4): 446-450. doi: 10.3969/j.issn.0254-5357.2011.04.011 Sun Z Y, Liu K P, Liu M W. Analysis of basalt glass by electron probe micro analyzer[J]. Rock and Mineral Analysis, 2011, 30(4): 446-450. doi: 10.3969/j.issn.0254-5357.2011.04.011 |
[20] | 李小犁. 电子探针微量元素分析的一些思考[J]. 高校地质学报, 2021, 27(3): 306-316. Li X L. Several perspectives on microprobe trace elements analysis[J]. Geological Journal of China Universities, 2021, 27(3): 306-316. |
[21] | 包志安, 袁洪林, 陈开运, 等. 高温熔融研制安山岩玻璃标准物质初探[J]. 岩矿测试, 2011, 30(5): 521-527. Bao Z A, Yuan H L, Chen K Y, et al. Primary research on a synthetic experimental method of Andesite standard glass references by using high-temperature fusion[J]. Rock and Mineral Analysis, 2011, 30(4): 521-527. |
[22] | 宋佳瑶, 袁洪林, 包志安, 等. 高温熔融研制钾长石玻璃标准物质初探[J]. 岩矿测试, 2011, 30(4): 406-411. doi: 10.3969/j.issn.0254-5357.2011.04.005 Song J Y, Yuan H L, Bao Z A, et al. Preliminary research of K-feldspar glasses synthesis by high temperature melting[J]. Rock and Mineral Analysis, 2011, 30(4): 406-411. doi: 10.3969/j.issn.0254-5357.2011.04.005 |
[23] | Morgan V G B, London D. Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses[J]. American Mineralogist, 1996, 81(9-10): 1176-1185. doi: 10.2138/am-1996-9-1016 |
[24] | Morgan V G B, London D. Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses[J]. American Mineralogist, 2005, 90(7): 1131-1138. doi: 10.2138/am.2005.1769 |
[25] | Zhang R, Yang S, Jiang S, et al. Effect of beam diameter on the accurate analysis of silicate glasses using electron probe microanalysis[J]. Microscopy and Microanalysis, 2019, 25(S2): 2362-2363. doi: 10.1017/S1431927619012546 |
[26] | Spary J G, Rae D A. Quantitative electron-microprobe analysis of alkali silicate glasses: A review and user guide[J]. Canadian Mineralogist, 1995, 33(2): 323-332. |
[27] | Buse B, Kearns S. Importance of carbon contamination in high-resolution (FEG) EPMA of silicate minerals[J]. Microscopy and Microanalysis, 2015, 21(3): 594-605. doi: 10.1017/S1431927615000288 |
[28] | Vasamillet L F, Caldwell V F. Electron-probe microanalysis of alkali metals in glasses[J]. Journal of Applied Physics, 1969, 40: 1637-1643. doi: 10.1063/1.1657825 |
[29] | Mitchell R H. Titaniferous phlogopites from the leucite-lamproites of the West Kimberley area, western Australia[J]. Contributions to Mineralogy and Petrology, 1981, 76: 243-251. doi: 10.1007/BF00371964 |
[30] | Wagner C, Velde D. The mineralogy of K-richterite-bearing lamproites[J]. American Mineralogist, 1986, 7(1): 17-37. |
[31] | Liu Q, Lange R A, Ai Y. Acoustic velocity measurements on Na2O-TiO2-SiO2 liquids: Evidence for a highly compressible TiO2 component related to five-coordinated Ti[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4314-4326. doi: 10.1016/j.gca.2007.06.054 |
[32] | Bell E. Ancient magma sources revealed[J]. Nature Geosciences, 2017, 10: 397-398. doi: 10.1038/ngeo2955 |
[33] | Singletary S, Grove T. Origin of lunar high-titanium ultramafic glasses: A hybridized source?[J]. Earth and Planetary Science Letters, 2008, 268(1-2): 182-189. doi: 10.1016/j.epsl.2008.01.019 |
[34] | 欧阳自远, 邹永廖. 月球: 人类走向深空的前哨站[M]. 北京: 清华大学出版社, 2002. Ouyang Z Y, Zou Y L. Moon: The outpost to deep space[M]. Beijing: Tsinghua University Press, 2002. |
[35] | Belyi Y I, Minakova N A, Zaichuk A V. On the structural units in titanium-containing glasses and their influence on the opacity of glass coatings[J]. Glass Physics & Chemistry, 2008, 34(3): 282-291. |
[36] | Li X, Zhang L, Wei C, et al. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites[J]. Journal of Metamorphic Geology, 2018, 35: 1-22. |
[37] | Liu Q, Lange R A. The partial molar volume and thermal expansivity of TiO2 in alkali silicate melts: Systematic variation with Ti coordination[J]. Geochimica et Cosmochimica Acta, 2001, 65(14): 2379-2393. doi: 10.1016/S0016-7037(01)00565-8 |
[38] | 张文兰, 胡欢, 谢磊, 等. Na元素的EPMA定量分析: 矿物晶体结构对Na行为的制约[J]. 高校地质学报, 2021, 27(3): 327-339. Zhang W L, Hu H, Xie L, et al. Quantitative analysis of Na by EPMA: Constraints for the behavior of Na by the crystal structure[J]. Geological Journal of China Universities, 2021, 27(3): 327-339. |
Correlation between the probe diameter and the element content (Na, K, Si and Ti) in the conditions of 10nA beam current and 10s count time
Correlation between the probe diameter and the element content in the conditions of 10nA current beam and 10s count time for sample NTS-2. NOR refers to the normal value before synthesis
Correlation between the beam current and the element content (Na, K, Si and Ti) in the conditions of 100μm probe diameter and 10s count time
In the conditions of 5nA beam current, (a, b) correlation between the Na content and count time under 100μm probe diameter; (c-f) correlation among the K content, count time and the probe diameter
Elemental map modeling results for Na or K, Si and Ti by grid analysis with 100μm step in the conditions of 5nA beam current and 100μm probe diameter
Quantification results by different standard data performed under 10μm (STD10) and 100μm (STD100) for two microzones (Zone 1 and Zone 2) in the NTS-1 sample in the conditions of 5nA and 100μm
Correlation between the quantification results by different standard data performed under 10μm (STD10) and 100μm (STD100) and the probe diameter for sample NTS-2 in the conditions of 10nA and 10s count time