Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 1
Article Contents

TAO Ling, TONG Yun-long, YU Fang-ke, YANG Wan-hui, WANG Yi-rong, WANG Li, REN Jun. Chemical Speciation and Environmental Risk of Cd in Soil Stabilized with Alkali-modified Attapulgite[J]. Rock and Mineral Analysis, 2022, 41(1): 109-119. doi: 10.15898/j.cnki.11-2131/td.202108270108
Citation: TAO Ling, TONG Yun-long, YU Fang-ke, YANG Wan-hui, WANG Yi-rong, WANG Li, REN Jun. Chemical Speciation and Environmental Risk of Cd in Soil Stabilized with Alkali-modified Attapulgite[J]. Rock and Mineral Analysis, 2022, 41(1): 109-119. doi: 10.15898/j.cnki.11-2131/td.202108270108

Chemical Speciation and Environmental Risk of Cd in Soil Stabilized with Alkali-modified Attapulgite

More Information
  • BACKGROUND

    Heavy metal pollution in soil has been a serious threat to human health and ecological environmental safety. Stabilization remediation has become an important means of remediation of heavy metal contaminated soil due to the high efficiency and low cost. Attapulgite modified by alkali with an improved performance, provides an important basis for its stabilization and remediation of heavy metal contaminated soil.

    OBJECTIVES

    To analyze the changes in physical and chemical properties of attapulgite before and after modification, and to study the effects of attapulgite modified by NaOH on the chemical speciation changes and environmental risks of Cd in contaminated soil, and to explore the stabilization effects of attapulgite modified by NaOH on Cd in the soil.

    METHODS

    Different proportions of NaOH were used to modify attapulgite. The surface characteristics, crystal structure and functional groups of the materials were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Stabilization experiments were carried out on artificially prepared heavy metal Cd contaminated soil to study the effects of NaOH-modified attapulgite on the changes of chemical speciation of Cd and environmental risks in contaminated soil.

    RESULTS

    By adding the modified material with the mass ratio of NaOH to attapulgite of 1:2, the pH value of the soil was significantly increased by 0.85 units. The exchangeable Cd content decreased by 46.28% and the residual Cd content increased by 1.98 times. The risk assessment code (RAC) and potential risk index (PRI) of Cd in soil decreased the most from 36.70% and 207.90 to 20.08% and 86.40, respectively, which effectively reduced the transfer capacity and environmental risk of Cd in soil. According to SEM, XRD and FTIR analyses, after modification, the surface roughness of attapulgite increased, chemical bonds such as Si-O-Si bonds were opened, so active sites for adsorption of heavy metals increased. Attapulgite modified by alkali immobilized Cd mainly through adsorption, and the reaction of silanol and hydroxide with Cd2+ generated precipitate, so as to achieve the effect of stabilizing and repairing Cd contaminated soil.

    CONCLUSIONS

    Alkali-modified attapulgite can effectively stabilize Cd in soil, which has a significant application prospect in remediation of heavy metal contaminated soil.

  • 加载中
  • [1] Chai L, Wang Y H, Wang X, et al. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China[J]. Ecological Indicators, 2021, 125: 107507. doi: 10.1016/j.ecolind.2021.107507

    CrossRef Google Scholar

    [2] 余涛, 蒋天宇, 刘旭, 等. 土壤重金属污染现状及检测分析技术研究进展[J]. 中国地质, 2021, 48(2): 460-476.

    Google Scholar

    Yu T, Jiang T X, Liu X, et al. Research progress in current status of soil heavy metal pollution and analysis technology[J]. Geology in China, 2021, 48(2): 460-476.

    Google Scholar

    [3] Basan H, Sirin M, Gokbayrak E, et al. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop Province, Turkey[J]. Chemosphere, 2020, 241: 125015. doi: 10.1016/j.chemosphere.2019.125015

    CrossRef Google Scholar

    [4] Huang B, Li Z W, Huang J Q, et al. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science and Pollution Research International, 2015, 22(15): 11467-11477. doi: 10.1007/s11356-015-4386-x

    CrossRef Google Scholar

    [5] 张静静, 朱爽阁, 朱利楠, 等. 不同钝化剂对微碱性土壤镉、镍形态及小麦吸收的影响[J]. 环境科学, 2020, 41(1): 460-468.

    Google Scholar

    Zhang J J, Zhu S G, Zhu L N, et al. Effects of different amendments on fractions and uptake by winter wheat in slightly alkaline soil contaminated by cadmium and nickel[J]. Environmental Science, 2020, 41(1): 460-468.

    Google Scholar

    [6] 杨国航, 李合莲, 李菊梅, 等. 污泥农用对碱性土壤重金属元素形态分布的影响[J]. 济南大学学报(自然科学版), 2018, 32(2): 124-133.

    Google Scholar

    Yang G H, Li H L, Li J M, et al. Effect of agricultural application of sludge on forms of heavy metal elements in alkaline soil[J]. Journal of University of Jinan (Science and Technology), 2018, 32(2): 124-133.

    Google Scholar

    [7] 邢金峰, 仓龙, 任静华. 重金属污染农田土壤化学钝化修复的稳定性研究进展[J]. 土壤, 2019, 51(2): 224-234.

    Google Scholar

    Xing J F, Cang L, Ren J H. Remediation stability of in situ chemical immobilization of heavy metals contamin-ated soil: A review[J]. Soils, 2019, 51(2): 224-234.

    Google Scholar

    [8] 冉洪珍, 郭朝晖, 肖细元, 等. 改良剂连续施用对农田水稻Cd吸收的影响[J]. 中国环境科学, 2019, 39(3): 1117-1123. doi: 10.3969/j.issn.1000-6923.2019.03.027

    CrossRef Google Scholar

    Ran H Z, Guo Z H, Xiao X Y, et al. Effects of continuous application of soil amendments on cadmium availability in paddy soil and uptake by rice[J]. China Environmental Science, 2019, 39(3): 1117-1123. doi: 10.3969/j.issn.1000-6923.2019.03.027

    CrossRef Google Scholar

    [9] 安茂国, 赵庆玲, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204-211.

    Google Scholar

    An M G, Zhao Q L, Tan X F, et al. Research on the effect of chemical reduction-stabilization combined reme-diation of Cr contaminated soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211.

    Google Scholar

    [10] Li M Y, Zhang J C, Yang X, et al. Responses of ammonia-oxidizing microorganisms to biochar and compost amendments of heavy metals-polluted soil[J]. Journal of Environmental Sciences, 2021, 102: 263-272. doi: 10.1016/j.jes.2020.09.029

    CrossRef Google Scholar

    [11] Ren J, Dai L, Tao L. Stabilization of heavy metals in sewage sludge by attapulgite[J]. Journal of the Air and Waste Management Association, 2021, 71(3): 392-399. doi: 10.1080/10962247.2020.1843563

    CrossRef Google Scholar

    [12] 陶雪, 杨琥, 季荣, 等. 固定剂及其在重金属污染土壤修复中的应用[J]. 土壤, 2016, 48(1): 1-11.

    Google Scholar

    Tao X, Yang H, Ji R, et al. Stabilizers and their applications in remediation of heavy metal-contaminated soil[J]. Soils, 2016, 48(1): 1-11.

    Google Scholar

    [13] 赵廷伟, 李洪达, 周薇, 等. 施用凹凸棒石对Cd污染农田土壤养分的影响[J]. 农业环境科学学报, 2019, 38(10): 2313-2318. doi: 10.11654/jaes.2019-0783

    CrossRef Google Scholar

    Zhao T W, Li H D, Zhou W, et al. Effects of attapulgite application on soil nutrients in Cd-contaminated farmland[J]. Journal of Agro-Environment Science, 2019, 38(10): 2313-2318. doi: 10.11654/jaes.2019-0783

    CrossRef Google Scholar

    [14] 谭科艳, 刘晓端, 刘久臣, 等. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究[J]. 岩矿测试, 2011, 30(4): 451-456. doi: 10.3969/j.issn.0254-5357.2011.04.012

    CrossRef Google Scholar

    Tan K Y, Liu X R, Liu J C, et al. Remediation experiments of attapulgite clay to heavy metal contaminated soil[J]. Rock and Mineral Analysis, 2011, 30(4): 451-456. doi: 10.3969/j.issn.0254-5357.2011.04.012

    CrossRef Google Scholar

    [15] 陈展祥, 陈传胜, 陈卫平, 等. 凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制[J]. 环境科学, 2018, 39(10): 4744-4751.

    Google Scholar

    Chen Z X, Chen C S, Chen W P, et al. Effect and mechanism of attapulgite and its modified materials on bioavailability of cadmium in soil[J]. Environmental Science, 2018, 39(10): 4744-4751.

    Google Scholar

    [16] 陶玲, 杨欣, 颜子皓, 等. 酸活化坡缕石制备重金属钝化材料的研究[J]. 非金属矿, 2018, 41(1): 11-14. doi: 10.3969/j.issn.1000-8098.2018.01.004

    CrossRef Google Scholar

    Tao L, Yang X, Yan Z H, et al. Study on the function of passivant for heavy metals with palygorskite modified by acid[J]. Non-Metallic Mines, 2018, 41(1): 11-14. doi: 10.3969/j.issn.1000-8098.2018.01.004

    CrossRef Google Scholar

    [17] 王金明, 易发成. 改性凹凸棒石表征及其对模拟核素Cs+的吸附研究[J]. 非金属矿, 2006, 29(2): 53-55.

    Google Scholar

    Wang J M, Yi F C. Study on characterization of modified attapulgite and its adsorption capacity on simulated nuclide Cs+[J]. Non-Metallic Mines, 2006, 29(2): 53-55.

    Google Scholar

    [18] 余树荣, 张婷, 戴虎虎, 等. 凹凸棒石复合氧化钙脱硫剂脱除SO2的试验研究[J]. 非金属矿, 2009, 32(6): 1-2, 19. doi: 10.3969/j.issn.1000-8098.2009.06.001

    CrossRef Google Scholar

    Yu S R, Zhang T, Dai H H, et al. Study on desulfurization of SO2 by attapulgite/calcium oxide compound desulfuri-zation agent[J]. Non-Metallic Mines, 2009, 32(6): 1-2, 19. doi: 10.3969/j.issn.1000-8098.2009.06.001

    CrossRef Google Scholar

    [19] 任珺, 刘丽莉, 陶玲, 等. 甘肃地区凹凸棒石的矿物组成分析[J]. 硅酸盐通报, 2013, 32(11): 2362-2365.

    Google Scholar

    Ren J, Liu L L, Tao L, et al. Mineral composition analysis of attapulgite from Gansu area[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(11): 2362-2365.

    Google Scholar

    [20] Dai L, Ren J, Tao L, et al. Chemical speciation and phytoavailability of Cr, Ni, Zn and Cu in loess amended with attapulgite-stabilized sewage sludge[J]. Environmental Pollutants and Bioavailability, 2019, 31(1): 112-119. doi: 10.1080/26395940.2019.1588076

    CrossRef Google Scholar

    [21] Nemati K, Bakar N K A, Abas M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011, 192(1): 402-410.

    Google Scholar

    [22] Xu X B, Hu X, Ding Z H, et al. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars[J]. Chemosphere, 2017, 189: 76-85. doi: 10.1016/j.chemosphere.2017.09.021

    CrossRef Google Scholar

    [23] Ke X, Gui S F, Huang H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China[J]. Chemosphere, 2017, 175: 473-481. doi: 10.1016/j.chemosphere.2017.02.029

    CrossRef Google Scholar

    [24] Wang W B, Tian G Y, Zhang Z F, et al. A simple hydro-thermal approach to modify palygorskite for high-efficient adsorption of methylene blue and Cu(Ⅱ) ions[J]. Chemical Engineering Journal, 2015, 265: 228-238. doi: 10.1016/j.cej.2014.11.135

    CrossRef Google Scholar

    [25] 张平萍, 陈雪刚, 程继鹏, 等. 水热条件下坡缕石在NaOH溶液中的行为及结构变化[J]. 无机化学学报, 2009, 25(9): 1545-1550. doi: 10.3321/j.issn:1001-4861.2009.09.006

    CrossRef Google Scholar

    Zhang P P, Chen X G, Cheng J P, et al. Behavior and structural transformation of palygorskite in NaOH solution under hydrothermal conditions[J]. Chinese Jouranl of Inorganic Chemistry, 2009, 25(9): 1545-1550. doi: 10.3321/j.issn:1001-4861.2009.09.006

    CrossRef Google Scholar

    [26] Suarez M, Garcia R E. FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet[J]. Applied Clay Science, 2006, 31(1-2): 154-163. doi: 10.1016/j.clay.2005.10.005

    CrossRef Google Scholar

    [27] Yan W C, Liu D, Tan D Y, et al. FTIR spectroscopy study of the structure changes of palygorskite under heating[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 97: 1052-1057. doi: 10.1016/j.saa.2012.07.085

    CrossRef Google Scholar

    [28] Suarez M, Garcia R E. Macroscopic palygorskite from lisbom volcanic complex[J]. European Journal of Mineralogy, 2006, 18(1): 119-126. doi: 10.1127/0935-1221/2006/0018-0119

    CrossRef Google Scholar

    [29] 辜娇峰, 周航, 吴玉俊, 等. 复合改良剂对稻田Cd、As活性与累积的协同调控[J]. 中国环境科学, 2016, 36(1): 206-214. doi: 10.3969/j.issn.1000-6923.2016.01.035

    CrossRef Google Scholar

    Gu J F, Zhou H, Wu Y J, et al. Synergistic control of combined amendment on bioavailability and accumulation of Cd and As in rice paddy soil[J]. China Environmental Science, 2016, 36(1): 206-214. doi: 10.3969/j.issn.1000-6923.2016.01.035

    CrossRef Google Scholar

    [30] 陶玲, 管天成, 刘瑞珍, 等. 热改性坡缕石对土壤Cd污染的钝化修复研究[J]. 农业环境科学学报, 2021, 40(4): 782-790.

    Google Scholar

    Tao L, Guan T C, Liu R Z, et al. Stabilization remediation of cadmium contaminated soil by using heat-modified palygorskite[J]. Journal of Agro-Environment Science, 2021, 40(4): 782-790.

    Google Scholar

    [31] Yin X L, Xu Y M, Huang R, et al. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale[J]. Environmental Science: Processes & Impacts, 2017, 19(12): 1563-1570.

    Google Scholar

    [32] 廖启林, 刘聪, 朱伯万, 等. 凹凸棒石调控Cd污染土壤的作用及其效果[J]. 中国地质, 2014, 41(5): 1693-1704. doi: 10.3969/j.issn.1000-3657.2014.05.023

    CrossRef Google Scholar

    Liao Q L, Liu C, Zhu B W, et al. The role and effect of applying attapulgite to controlling Cd-contaminated soil[J]. Geology in China, 2014, 41(5): 1693-1704. doi: 10.3969/j.issn.1000-3657.2014.05.023

    CrossRef Google Scholar

    [33] Qin F, Shan X Q, Wei B. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils[J]. Chemosphere, 2004, 57(4): 253-263. doi: 10.1016/j.chemosphere.2004.06.010

    CrossRef Google Scholar

    [34] 武成辉, 李亮, 晏波, 等. 新型硅酸盐钝化剂对镉污染土壤的钝化修复效应研究[J]. 农业环境科学学报, 2017, 36(10): 2007-2013. doi: 10.11654/jaes.2017-0471

    CrossRef Google Scholar

    Wu C H, Li L, Yan B, et al. Remediation effects of a new type of silicate passivator on cadmium-contaminated soil[J]. Journal of Agro-Environment Science, 2017, 36(10): 2007-2013. doi: 10.11654/jaes.2017-0471

    CrossRef Google Scholar

    [35] 王永昕, 孙约兵, 徐应明, 等. 施用鸡粪对海泡石钝化修复镉污染菜地土壤的强化效应及土壤酶活性影响[J]. 环境化学, 2016, 35(1): 159-169.

    Google Scholar

    Wang Y X, Sun Y B, Xu Y M, et al. Enhancement of chicken manure on the immobilization remediation of cadmium contaminated vegetable soil and enzyme activity using sepiolite[J]. Environmental Chemistry, 2016, 35(1): 159-169.

    Google Scholar

    [36] Zotiadis V, Argyraki A, Theologou E. Pilot scale application of attapulgitic clay for stabilization of toxic elements in contaminated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5): 633-637. doi: 10.1061/(ASCE)GT.1943-5606.0000620

    CrossRef Google Scholar

    [37] 罗宁临, 李忠武, 黄梅, 等. 壳聚糖(改性)-沸石对农田土壤重金属镉钝化技术研究[J]. 湖南大学学报(自然科学版), 2020, 47(4): 132-140.

    Google Scholar

    Luo N L, Li Z W, Huang M, et al. Immobilizing cadmium in paddy soil by using modified chitosan-zeolite[J]. Journal of Hunan University (Natural Sciences), 2020, 47(4): 132-140.

    Google Scholar

    [38] Shi L, Guo Z H, Peng C, et al. Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: A four-season field experiment[J]. Ecotoxicology and Environmental Safety, 2019, 171: 425-434. doi: 10.1016/j.ecoenv.2019.01.006

    CrossRef Google Scholar

    [39] Zhao B W, Xu R Z, Ma F F, et al. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil[J]. Journal of Environmental Management, 2016, 184(3): 569-574.

    Google Scholar

    [40] 陈哲, 冯秀娟, 朱易春, 等. 天然及改性凹凸棒对稀土尾矿土壤中重金属铅的钝化效果研究[J]. 岩矿测试, 2020, 39(6): 847-855.

    Google Scholar

    Chen Z, Feng X J, Zhu Y C, et al. Study on the passivation effect of natural and modified attapulgite on heavy metal lead in soils of the rare earth tailings[J]. Rock and Mineral Analysis, 2020, 39(6): 847-855.

    Google Scholar

    [41] 窦韦强, 安毅, 秦莉, 等. 土壤pH对镉形态影响的研究进展[J]. 土壤, 2020, 52(3): 439-444.

    Google Scholar

    Dou W Q, An Y, Qin L, et al. Advances in effects of soil pH on cadmium form[J]. Soils, 2020, 52(3): 439-444.

    Google Scholar

    [42] 郭炜辰, 杜立宇, 梁成华, 等. 天然与改性沸石对土壤Cd污染赋存形态的影响研究[J]. 土壤通报, 2019, 50(3): 719-724.

    Google Scholar

    Guo W C, Du L Y, Liang C H, et al. Effects of natural and ammonium chloride/calcium chloride-modified zeolites on cadmium speciation in cintaminated soil[J]. Chinese Journal of Soil Science, 2019, 50(3): 719-724.

    Google Scholar

    [43] 迟荪琳, 徐卫红, 熊仕娟, 等. 不同镉水平下纳米沸石对土壤pH、CEC及Cd形态的影响[J]. 环境科学, 2017, 38(4): 1654-1666.

    Google Scholar

    Chi S L, Xu W H, Xiong S J, et al. Effects of nano zelites on pH, CEC in soil and Cd fractions in plant and soil at different cadmium levels[J]. Environmental Science, 2017, 38(4): 1654-1666.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(3)

Article Metrics

Article views(3910) PDF downloads(254) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint