Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 1
Article Contents

LI Jin-cheng, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, REN Yu. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. doi: 10.15898/j.cnki.11-2131/td.202110080140
Citation: LI Jin-cheng, CAO Wen-geng, PAN Deng, WANG Shuai, LI Ze-yan, REN Yu. Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. doi: 10.15898/j.cnki.11-2131/td.202110080140

Influences of Nitrogen Cycle on Arsenic Enrichment in Shallow Groundwater from the Yellow River Alluvial Fan Plain

More Information
  • BACKGROUND

    Arsenic content in shallow groundwater of the Yellow River alluvial fan plain exceeds the standard. A comprehensive understanding of the arsenic enrichment mode driven by the nitrogen cycle of shallow groundwater in the northern Henan Plain is essential for the sustainable use of groundwater resources and the health of residents. The main area of the North Henan plain is the Yellow River alluvial fan plain. The sedimentary environment in the northern Henan plain is complex, and is influenced by the Yellow River breach, diversion and oscillation, as well as alluvial diluvial in the mountainous area around the basin. The distribution, migration and release mechanism of As, NH4+ and NO3- are quite different under different sedimentary environment conditions. The joint enrichment mechanism of the three is still unclear, which is worth further study.

    OBJECTIVES

    To investigate the effect of nitrogen cycling on arsenic migration and enrichment in groundwater in the Northern Henan Plain.

    METHODS

    513 shallow groundwater samples were collected from the northern Henan Plain. Atomic fluorescence spectroscopy was used to determine the arsenic content, atomic absorption spectroscopy and ion chromatography, and other methods for major and trace element analysis. The correlation between nitrate, ammonia nitrogen and arsenic was investigated, and the influence of nitrogen cycle on the migration and enrichment of arsenic in groundwater was studied.

    RESULTS

    The over-standard rate of arsenic concentration in shallow groundwater in the study area was 17.3%. The occurrence and transformation modes of nitrogen under different depositional environmental conditions were important driving factors for arsenic enrichment. A large amount of NO3- was produced by nitrification in the groundwater of the alluvial fan in the piedmont alluvial fan, which had the average concentration of 9.3mg/L and was the highest in the district. At the same time, the concentration of arsenic was the lowest in the district, with the average of 1.3μg/L. The good negative correlation between NO3- and As concentration indicated that nitrification produced a large amount of NO3-, which was not conducive to the dissolution of arsenic-containing iron oxide. The depressions in front of the alluvial fan and the Yellow River crater fan with higher NH4+ content were the gathering places of high-arsenic groundwater. The average concentration of arsenic in groundwater from these two areas was 49.7μg/L and 18.9μg/L, respectively, and the exceeding rate reached 87.5% and 71.4%. The good positive correlation between arsenic content and NH4+ in groundwater indicated that the process of denitrification and dissimilative reduction of nitric acid to ammonium (DNRA) consumed NO3- in groundwater and generated a large amount of NH4+, which promoted the reduction and dissolution of iron oxides that adsorbed arsenic, forming an environment rich in arsenic.

    CONCLUSIONS

    The nitrogen cycle plays an important role in the migration and enrichment of arsenic. The migration and enrichment mode of arsenic driven by the nitrogen cycle provides a scientific basis for the treatment and supervision of groundwater with high arsenic content.

  • 加载中
  • [1] Daniele P, Stefano G, Eleonora F, et al. Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy[J]. Journal of Geochemical Exploration, 2020, 217.

    Google Scholar

    [2] Podgorski J, Berg M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850. doi: 10.1126/science.aba1510

    CrossRef Google Scholar

    [3] 杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿测试, 2020, 39(4): 475-492.

    Google Scholar

    Yang W L, Shen Y T. A review of research progress on the absorption mechanism of arsenic and agronomic pathwaysto control arsenic absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492.

    Google Scholar

    [4] 郭华明, 倪萍, 贾永锋, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘, 2014, 21(4): 1-12.

    Google Scholar

    Guo H M, Ni P, Jia Y F, et al. Chemical characteristics and genesis of geogenic high-arsenic groundwater in the world[J]. Earth Science Frontiers, 2014, 21(4): 1-12.

    Google Scholar

    [5] Cao W G, Guo H M, Zhang Y L, et al. Controls of paleo-channels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Science of the Total Environment, 2018, 613-614(1): 958-968.

    Google Scholar

    [6] Kumar M, Das A, Das N, et al. Co-occurrence perspective of arsenic and fluoride in the groundwater of Diphu, Assam, northeastern India[J]. Chemosphere, 2016, 150: 227-238. doi: 10.1016/j.chemosphere.2016.02.019

    CrossRef Google Scholar

    [7] Pi K F, Wang Y X, Xie X J, et al. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China[J]. Journal of Hazardous Materials, 2015, 300: 652-661. doi: 10.1016/j.jhazmat.2015.07.080

    CrossRef Google Scholar

    [8] Wen D G, Zhang F C, Zhang E Y, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135: 1-21. doi: 10.1016/j.gexplo.2013.10.012

    CrossRef Google Scholar

    [9] Janardhana R N. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies[J]. Environmental Research, 2021, 203: 111782.

    Google Scholar

    [10] 郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96.

    Google Scholar

    Guo H M, Guo Q, Jia Y F, et al. Chemical characteristics and geochemical processes of high arsenic groundwater in different regions of China[J]. Journal of Earth Sciences and Environment, 2013, 35(3): 83-96.

    Google Scholar

    [11] 董会军, 董建芳, 王昕洲, 等. pH值对HPLC-ICP-MS测定水体中不同形态砷化合物的影响[J]. 岩矿测试, 2019, 38(5): 510-517.

    Google Scholar

    Dong H J, Dong J F, Wang X Z, et al. Effect of pH on determination of various arsenic species in water by HPLC-ICP-MS[J]. Rock and Mineral Analysis, 2019, 38(5): 510-517.

    Google Scholar

    [12] Sahoo P K, Zhu W, Kim S H, et al. Relations of arsenic concentrations among groundwater, soil and paddy from an alluvial plain of Korea[J]. Geosciences Journal, 2013, 17(3): 363-370. doi: 10.1007/s12303-013-0031-1

    CrossRef Google Scholar

    [13] 吴昆明, 郭华明, 魏朝俊. 改性磁铁矿对水体中砷的吸附特性研究[J]. 岩矿测试, 2017, 36(6): 624-632.

    Google Scholar

    Wu K M, Guo H M, Wei C J. Adsorption characteristics of arsenic in water by modified magnetite[J]. Rock and Mineral Analysis, 2017, 36(6): 624-632.

    Google Scholar

    [14] Stüben D, Berner Z, Chandrasekharam D, et al. Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of As under reducing conditions[J]. Applied Geochemistry, 2003, 18(9): 1417-1434. doi: 10.1016/S0883-2927(03)00060-X

    CrossRef Google Scholar

    [15] Ravenscroft P, Burgess W G, Ahmed K M, et al. Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting[J]. Hydrogeology Journal, 2006, 13(5-6): 727-751.

    Google Scholar

    [16] Kurosawa K, Egashira K, Tani M, et al. Variation in arsenic concentration relative to ammonium nitrogen and oxidation reduction potential in surface and groundwater[J]. Communications in Soil Science and Plant Analysis, 2008, 39(9-10): 1467-1475. doi: 10.1080/00103620802004318

    CrossRef Google Scholar

    [17] Canfield D E, Glazer A N, Falkowski P G. The evolution and future of Earth's nitrogen cycle[J]. Science, 2010, 330(6001): 192-196. doi: 10.1126/science.1186120

    CrossRef Google Scholar

    [18] Berner R A. Geological nitrogen cycle and atmospheric N2 over phanerozoic time[J]. Geology, 2006, 34(5): 413-415. doi: 10.1130/G22470.1

    CrossRef Google Scholar

    [19] Norrman J, Sparrenbom C J, Berg M, et al. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values[J]. Applied Geochemistry, 2015, 61(15): 248-258.

    Google Scholar

    [20] 祝贤彬. 砷氧化还原微生物催化的硝酸盐转化及其对环境的影响[D]. 北京: 中国地质大学(北京), 2020.

    Google Scholar

    Zhu X B. Nitrate transformations catalyzed by the arsenic redox microorganisms and their environmental influences[D]. Beijing: China University of Geosciences(Beijing), 2020.

    Google Scholar

    [21] 贾正雷. 土壤砷和氮含量的空间变异及其相互关系研究[D]. 广州: 华南农业大学, 2016.

    Google Scholar

    Jia Z L. Study on spatial variability and relationship of soil arsenic and soil nitrogen[D]. Guangzhou: South China Agricultural University, 2016.

    Google Scholar

    [22] Gao Z P, Weng H C, Guo H M. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. Journal of Hydrology, 2021, 595: 125981. doi: 10.1016/j.jhydrol.2021.125981

    CrossRef Google Scholar

    [23] Smith R L, Kent D B, Repert D A, et al. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer[J]. Geochimica et Cosmochimica Acta, 2017, 196(1): 102-120.

    Google Scholar

    [24] Karunanidhi D, Aravinthasamy P, Subramani T, et al. Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River Basin, South India[J]. Human & Ecological Risk Assessment, 2019, 25(1-2): 250-270.

    Google Scholar

    [25] Singh G, Rishi M S, Herojeet R, et al. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India[J]. Environmental Geochemistry and Health, 2020, 42(7): 1833-1862. doi: 10.1007/s10653-019-00449-6

    CrossRef Google Scholar

    [26] Böhlke J K, Smith R L, Miller D N. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies[J]. Water Resources Research, 2007, 42(5): W05411(1-19).

    Google Scholar

    [27] Utom A U, Werban U, Leven C, et al. Groundwater nitrification and denitrification are not always strictly aerobic and anaerobic processes, respectively: An assessment of dual-nitrate isotopic and chemical evidence in a stratified alluvial aquifer[J]. Biogeochemistry, 2020, 147(2): 211-223. doi: 10.1007/s10533-020-00637-y

    CrossRef Google Scholar

    [28] Savard M M, Paradis D, Somers G, et al. Winter nitrification contributes to excess NO3- in groundwater of an agricultural region: A dual-isotope study[J]. Water Resources Research, 2008, 43(6): W06422(1-10).

    Google Scholar

    [29] Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232. doi: 10.1016/j.watres.2008.07.020

    CrossRef Google Scholar

    [30] Singha S, Anilb A G, Kumarc V, et al. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation[J]. Chemosphere, 2021, 287(1): 131996.

    Google Scholar

    [31] Rütting T, Huygens D, Müller C, et al. Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest[J]. Biogeochemistry, 2008, 90(3): 243-258. doi: 10.1007/s10533-008-9250-3

    CrossRef Google Scholar

    [32] 杨杉, 吴胜军, 蔡延江, 等. 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232.

    Google Scholar

    Yang S, Wu S J, Cai Y J, et al. The synergetic and competitive mechanism andthe dominant factors of dissimilatory nitrate reduction processes: A review[J]. Acta Ecologica Sinica, 2016, 36(5): 1224-1232.

    Google Scholar

    [33] Yang W H, Weber K A, Silver W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. doi: 10.1038/ngeo1530

    CrossRef Google Scholar

    [34] Ding B J, Chen Z H, Li Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu estuary region[J]. Science of the Total Environment, 2019, 662(1): 600-606.

    Google Scholar

    [35] Ding L J, An X L, Li S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48(18): 10641-10647.

    Google Scholar

    [36] Chen Y, Syvitski J P, Gao S, et al. Socio-economic impacts on flooding: A 4000-year history of the Yellow River, China[J]. Ambio, 2012, 41(7): 682-698. doi: 10.1007/s13280-012-0290-5

    CrossRef Google Scholar

    [37] Guo H M, Liu C, Lu H, et al. Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao Basin, Inner Mongolia, China: An iron isotope approach[J]. Geochimica et Cosmochimica Acta, 2013, 112(1): 130-145.

    Google Scholar

    [38] Guo H M, Zhang Y, Jia Y F, et al. Dynamic behaviors of water levels and arsenic concentration in shallow groundwater from the Hetao Basin, Inner Mongolia[J]. Journal of Geochemical Exploration, 2013, 135: 130-140. doi: 10.1016/j.gexplo.2012.06.010

    CrossRef Google Scholar

    [39] Stachowicz M, Hiemstra T, Riemsdijk W H. Arsenic-bicarbonate interaction on goethite particles[J]. Environmental Science & Technology, 2007, 41(16): 5620-5625.

    Google Scholar

    [40] DeVore C L, Rodriguez-Freire L, Mehdi-Ali A, et al. Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA[J]. Environmental Science Processes & Impacts, 2019, 21(3): 456-468.

    Google Scholar

    [41] Gao X B, Su C L, Wang Y X, et al. Mobility of arsenic in aquifer sediments at Datong Basin, northern China: Effect of bicarbonate and phosphate[J]. Journal of Geochemical Exploration, 2013, 135: 93-103. doi: 10.1016/j.gexplo.2012.09.001

    CrossRef Google Scholar

    [42] Anawar H M, Akai J, Sakugawa H. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater[J]. Chemosphere, 2004, 54(6): 753-762. doi: 10.1016/j.chemosphere.2003.08.030

    CrossRef Google Scholar

    [43] Appelo C A J, Van Der Weiden M J J, Tournassat C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic[J]. Environmental Science & Technology, 2002, 36(14): 3096-3103.

    Google Scholar

    [44] Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(3229) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint