Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 1
Article Contents

ZHANG Yuan, WANG Wen-dong, LU Bing, ZHAO Wen-zhi, YANG Yuan, LV Sheng-nan. Determination of Boron, Germanium, Bromine, Molybdenum, Tin, Iodine and Tungsten in Geochemical Survey Samples by ICP-MS with Alkali Fusion-Cation Exchange Resin Separation[J]. Rock and Mineral Analysis, 2022, 41(1): 99-108. doi: 10.15898/j.cnki.11-2131/td.202104300057
Citation: ZHANG Yuan, WANG Wen-dong, LU Bing, ZHAO Wen-zhi, YANG Yuan, LV Sheng-nan. Determination of Boron, Germanium, Bromine, Molybdenum, Tin, Iodine and Tungsten in Geochemical Survey Samples by ICP-MS with Alkali Fusion-Cation Exchange Resin Separation[J]. Rock and Mineral Analysis, 2022, 41(1): 99-108. doi: 10.15898/j.cnki.11-2131/td.202104300057

Determination of Boron, Germanium, Bromine, Molybdenum, Tin, Iodine and Tungsten in Geochemical Survey Samples by ICP-MS with Alkali Fusion-Cation Exchange Resin Separation

  • BACKGROUND

    Multi-target geochemical mapping is one of the most important basic regional tasks in multi-target regional geochemical surveys. In order to better reflect changes in the geochemical background, analytical methods are required to have higher accuracy and precision, and lower detection limits. Elements B, Ge, Br, Mo, Sn, I, and W in geochemical survey samples are mainly prepared and determined by smelting ore individually or in groups. The analysis procedure is long and involves 6 methods.

    OBJECTIVES

    In order to integrate 6 supporting analysis methods, optimize analysis conditions, and improve the accuracy and precision of the method.

    METHODS

    The mixed reagent of sodium peroxide and sodium hydroxide was used for alkali fusion. Citric acid was added to the solution. Cation exchange resin was used for static exchange for 2-3 hours to remove a large amount of cations in the solution and reduce matrix interference. B, Ge, Br, Mo, Sn, I, and W were determined using inductively coupled plasma mass spectrometry.

    RESULTS

    The detection limits of B, Ge, Br, Mo, Sn, I, and W were 0.66, 0.096, 0.78, 0.11, 0.15, 0.29, and 0.27μg/g, respectively. Relative standard deviation (RSD, n=12) was between 2.1% and 7.5%, which were all less than 10%.

    CONCLUSIONS

    The method is simple, rapid and low-cost, and its precision and accuracy meet the requirements of 《Specification of multi-purpose regional geochemical survey (1:250000)》 (DZ/T 0258-2014). It can quickly and accurately determine B, Ge, Br, Mo, Sn, I, W in geochemical survey samples in a thick coverage area.

  • 加载中
  • [1] 王安齐. 多目标地球化学调查样品中41种元素分析方案设计与应用[D]. 长春: 吉林大学, 2014.

    Google Scholar

    Wang A Q. Design and application of 41 element analysis schemes in multi-purpose geochemical survey samples[D]. Changchun: Jilin University, 2014.

    Google Scholar

    [2] 龚仓, 帅林阳, 夏祥, 等. 交流电弧直读光谱法快速测定地质样品中银、锡、钼、硼和铅[J]. 理化检验(化学分册), 2020, 56(12): 1320-1325.

    Google Scholar

    Gong C, Shuai L Y, Xia X, et al. Rapid determination of silver, tin, molybdenum, boron and lead in geological samples by AC arc direct-reading spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(12): 1320-1325.

    Google Scholar

    [3] 《岩石矿物分析》编委会. 岩石矿物分析(第四版)[M]. 北京: 地质出版社, 2011: 517-519(第三分册), 536-538 (第二分册), 201-206 (第一分册).

    Google Scholar

    Editorial board of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition)[M]. Beijing: Geological Publishing House, 2011, 517-519 (Vol. Ⅲ), 536-538 (Vol. Ⅱ), 201-206 (Vol. Ⅰ).

    Google Scholar

    [4] 张计东, 罗善霞, 焦圣兵, 等. 地球化学样品中微量锗的分析进展[J]. 冶金分析, 2014, 34(2): 29-35.

    Google Scholar

    Zhang J D, Luo S X, Jiao S B, et al. Analysis progress of trace germanium in geochemical samples[J]. Metallurgical Analysis, 2014, 34(2): 29-35.

    Google Scholar

    [5] 侍金敏, 冯廷建, 付鹏飞, 等. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素[J]. 岩矿测试, 2019, 38(6): 631-639.

    Google Scholar

    Shi J M, Feng T J, Fu P F, et al. Simultaneous determination of rare elements in metal sulfide ore by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 631-639.

    Google Scholar

    [6] 杨小斌, 张鑫, 文嘉明, 等. 混合酸溶样氢化物发生-原子荧光光谱法同时测定土壤中的硒和锗[J]. 化学分析计量, 2020, 29(5): 85-90.

    Google Scholar

    Yang X B, Zhang X, Wen J M, et al. Hydride generation of mixed acid-dissolved samples-simultaneous determination of selenium and germanium in soil by atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(5): 85-90.

    Google Scholar

    [7] 赵文志, 张填昊, 卢兵, 等. 粉末压片制样-波长色散X射线荧光光谱法测定土壤和水系沉积物中溴氯氟磷硫[J]. 冶金分析, 2021, 41(4): 27-33.

    Google Scholar

    Zhao W Z, Zhang T H, Lu B, et al. Determination of bromine, chlorine, fluorine, phosphorus and sulfur in soil and water system sediments by powder compaction sample preparation-wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2021, 41(4): 27-33.

    Google Scholar

    [8] 王啸, 展向娟, 高航, 等. 逆王水微波消解-电感耦合等离子体质谱法测定地球化学样品中的碘和溴[J]. 化学分析计量, 2019, 28(1): 55-58. doi: 10.3969/j.issn.1008-6145.2019.01.013

    CrossRef Google Scholar

    Wang X, Zhan X J, Gao H, et al. Microwave digestion of reverse aqua regia-determination of iodine and bromine in geochemical samples by inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(1): 55-58. doi: 10.3969/j.issn.1008-6145.2019.01.013

    CrossRef Google Scholar

    [9] 郭晓瑞, 王甜甜, 张宏丽, 等. 电感耦合等离子体质谱法测定地球化学样品中铌钽钨锡[J]. 冶金分析, 2021, 41(3): 44-50.

    Google Scholar

    Guo X R, Wang T T, Zhang H L, et al. Determination of niobium, tantalum, tungsten and tin in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 44-50.

    Google Scholar

    [10] 冯先进. 电感耦合等离子体质谱分析技术在国内矿石矿物分析中的应用[J]. 冶金分析, 2020, 40(6): 21-36.

    Google Scholar

    Feng X J. Application of inductively coupled plasma mass spectrometry in the analysis of domestic ores andminerals[J]. Metallurgical Analysis, 2020, 40(6): 21-36.

    Google Scholar

    [11] 徐进力, 邢夏, 刘彬, 等. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249.

    Google Scholar

    Xu J L, Xing X, Liu B, et al. Determination of trace molybdenum in iron ore by inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249.

    Google Scholar

    [12] 贾维斯K E, 格雷A L, 霍克R S(著). 尹明, 李冰(译). 电感耦合等离子体质谱手册[M]. 北京: 原子能出版社, 1997: 160-161.

    Google Scholar

    Jarvis K E, Gray A L, Houk R S(Editor). Yin M, Li B(Translators). Handbook of inductively coupled plasma-mass spectrometry[M]. Beijing: Geological Publishing House, 1997: 160-161.

    Google Scholar

    [13] 刘崴, 胡俊栋, 杨红霞, 等. 电感耦合等离子体质谱联用技术在元素形态分析中的应用进展[J]. 岩矿测试, 2021, 40(3): 327-339.

    Google Scholar

    Liu W, Hu J D, Yang H X, et al. Application progress of inductively coupled plasma mass spectrometry in element speciation analysis[J]. Rock and Mineral Analysis, 2021, 40(3): 327-339.

    Google Scholar

    [14] 金倩, 李晓敬, 陈庆芝, 等. 碱熔-强酸型阳离子交换树脂分离-电感耦合等离子体质谱法测定地质样品中硼锗钼锡碘钨[J]. 冶金分析, 2020, 40(7): 52-59.

    Google Scholar

    Jin Q, Li X J, Chen Q Z, et al. Determination of boron, germanium, molybdenum, tin, iodine and tungsten in geological samples by alkali fusion-strong acid cation exchange resin separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 52-59.

    Google Scholar

    [15] 杨惠玲, 夏辉, 杜天军, 等. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J]. 岩矿测试, 2013, 32(6): 887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007

    CrossRef Google Scholar

    Yang H L, Xia H, Du T J, et al. Simultaneous determination of tin, tungsten, molybdenum, copper, lead and zinc in tin ore by inductively coupled plasma emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007

    CrossRef Google Scholar

    [16] 宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    CrossRef Google Scholar

    Song W J, Dai S F, Zhao L, et al. Determination of boron in coal by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    CrossRef Google Scholar

    [17] 高孝礼, 黄光明, 张培新, 等. 电感耦合等离子体质谱法测定磷矿石中的碘[J]. 岩矿测试, 2009, 28(5): 423-426. doi: 10.3969/j.issn.0254-5357.2009.05.005

    CrossRef Google Scholar

    Gao X L, Huang G M, Zhang P X, et al. Determination of iodine in phosphate rock by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 423-426. doi: 10.3969/j.issn.0254-5357.2009.05.005

    CrossRef Google Scholar

    [18] 李冰, 何红蓼, 史世云, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ. 不同介质及不同阴离子形态对测定信号的影响[J]. 岩矿测试, 2001, 20(3): 161-166. doi: 10.3969/j.issn.0254-5357.2001.03.001

    CrossRef Google Scholar

    Li B, He H L, Shi S Y, et al. Simultaneous determination of trace amounts of iodine, bromine, selenium, and arsenic in geological samples by inductively coupled plasma mass spectrometry Ⅰ. The influence of different media and different anion forms on the determination signal[J]. Rock and Mineral Analysis, 2001, 20(3): 161-166. doi: 10.3969/j.issn.0254-5357.2001.03.001

    CrossRef Google Scholar

    [19] 黄光明, 窦银萍, 张静梅, 等. 电感耦合等离子体质谱法同时测定地下水中硼溴碘[J]. 岩矿测试, 2008, 17(1): 25-28. doi: 10.3969/j.issn.0254-5357.2008.01.007

    CrossRef Google Scholar

    Huang G M, Dou Y P, Zhang J M, et al. Simultaneous determination of boron, bromine and iodine in groundwater by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2008, 17(1): 25-28. doi: 10.3969/j.issn.0254-5357.2008.01.007

    CrossRef Google Scholar

    [20] Makishima A, Nakamura E, Nakano T. Determination of boron in silicate samples by direct aspiration of sample HF solutions into ICP-MS[J]. Analytical Chemistry, 1997, 69: 3754-3759. doi: 10.1021/ac970383s

    CrossRef Google Scholar

    [21] Al-Ammar A S, Reitznerova E, Barnes R M. Feasibility of using beryllium as internal reference to reduce nonspectroscopic carbon species matrix effect in the inductively coupled plasma-mass spectrometry (ICPMS) determination of boron in biological samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 54: 1813-1820. doi: 10.1016/S0584-8547(99)00124-X

    CrossRef Google Scholar

    [22] 程仕群, 朱文亮, 占文慧, 等. 电感耦合等离子体质谱法测定酱油中硼含量[J]. 食品与机械, 2013, 29(5): 99-100, 248. doi: 10.3969/j.issn.1003-5788.2013.05.027

    CrossRef Google Scholar

    Cheng S Q, Zhu W L, Zhan W H, et al. Determination of boron in soy sauce by inductively coupled plasma mass spectrometry[J]. Food & Machinery, 2013, 29(5): 99-100, 248. doi: 10.3969/j.issn.1003-5788.2013.05.027

    CrossRef Google Scholar

    [23] 赵立凡, 唐宏兵, 欧阳运富, 等. 电感耦合等离子体质谱法测定那曲肝素钙中痕量硼[J]. 药物分析杂志, 2012, 32(10): 1842-1844.

    Google Scholar

    Zhao L F, Tang H B, Ouyang Y F, et al. Determination of trace boron in natreheparin calcium by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Pharmaceutical Analysis, 2012, 32(10): 1842-1844.

    Google Scholar

    [24] 阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159.

    Google Scholar

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159.

    Google Scholar

    [25] 靳兰兰, 王秀季, 李会来, 等. 电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J]. 冶金分析, 2016, 36(7): 1-14.

    Google Scholar

    Jin L L, Wang X J, Li H L, et al. Progress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J]. Metallurgical Analysis, 2016, 36(7): 1-14.

    Google Scholar

    [26] 姚海云, 谭靖, 郭冬发, 等. 同位素稀释电感耦合等离子体质谱法测定高纯石英中痕量硼[J]. 质谱学报, 2004, 25(2): 77-83. doi: 10.3969/j.issn.1004-2997.2004.02.004

    CrossRef Google Scholar

    Yao H Y, Tan J, Guo D F, et al. Determination of trace boron in high purity quartz by isotope dilution inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(2): 77-83. doi: 10.3969/j.issn.1004-2997.2004.02.004

    CrossRef Google Scholar

    [27] 李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005: 146.

    Google Scholar

    Li B, Yang H X. Principle and application of inductively coupled plasma mass spectrometry[M]. Beijing: Geological Publishing House, 2005: 146.

    Google Scholar

    [28] 郝原芳, 刘新, 宋丽华, 等. 电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡[J]. 岩矿测试, 2016, 35(4): 378-383.

    Google Scholar

    Hao Y F, Liu X, Song L H, et al. Determination of trace impurity elements cadmium and tin in lead alloy by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(4): 378-383.

    Google Scholar

    [29] 唐碧玉, 施意华, 杨仲平, 等. 灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟[J]. 岩矿测试, 2018, 37(4): 371-378.

    Google Scholar

    Tang B Y, Shi Y H, Yang Z P, et al. Determination of gallium, germanium and indium in coal by ashing acid dissolution-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 371-378.

    Google Scholar

    [30] 张杰芳, 闫玉乐, 夏承莉, 等. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J]. 岩矿测试, 2017, 36(1): 46-51.

    Google Scholar

    Zhang J F, Yan Y L, Xia C L, et al. Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(1): 46-51.

    Google Scholar

    [31] 贾玉萍, 王湘玲, 肖建平. 改进的极谱法测定化探样品中的钨钼[J]. 岩矿测试, 2009, 28(5): 494-496. doi: 10.3969/j.issn.0254-5357.2009.05.020

    CrossRef Google Scholar

    Jia Y P, Wang X L, Xiao J P. Determination of tungsten and molybdenum in geochemical exploration samples by improved polarography[J]. Rock and Mineral Analysis, 2009, 28(5): 494-496. doi: 10.3969/j.issn.0254-5357.2009.05.020

    CrossRef Google Scholar

    [32] 姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1030-1034.

    Google Scholar

    Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten molybdenum ores by alkali fusion-ion exchange resin separation-inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1030-1034.

    Google Scholar

    [33] 何海洋, 曲少鹏, 黄钢, 等. 氢化物发生-原子荧光光谱法测定稀土矿石中的锗[J]. 稀土, 2019, 40(2): 113-119.

    Google Scholar

    He H Y, Qu S P, Huang G, et al. Determination of germanium in rare earth ores by hydride generation-atomic fluorescence spectrometry[J]. Rare Earths, 2019, 40(2): 113-119.

    Google Scholar

    [34] 任冬, 周小琳, 宗有银, 等. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘[J]. 岩矿测试, 2019, 38(6): 734-740.

    Google Scholar

    Ren D, Zhou X L, Zong Y Y, et al. Determination of trace iodine in soil sediments and rocks by closed acid dissolution-hydroxylamine hydrochloride reduction ICP-MS method[J]. Rock and Mineral Analysis, 2019, 38(6): 734-740.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(6)

Article Metrics

Article views(2060) PDF downloads(115) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint