Citation: | ZHANG Yuan, WANG Wen-dong, LU Bing, ZHAO Wen-zhi, YANG Yuan, LV Sheng-nan. Determination of Boron, Germanium, Bromine, Molybdenum, Tin, Iodine and Tungsten in Geochemical Survey Samples by ICP-MS with Alkali Fusion-Cation Exchange Resin Separation[J]. Rock and Mineral Analysis, 2022, 41(1): 99-108. doi: 10.15898/j.cnki.11-2131/td.202104300057 |
Multi-target geochemical mapping is one of the most important basic regional tasks in multi-target regional geochemical surveys. In order to better reflect changes in the geochemical background, analytical methods are required to have higher accuracy and precision, and lower detection limits. Elements B, Ge, Br, Mo, Sn, I, and W in geochemical survey samples are mainly prepared and determined by smelting ore individually or in groups. The analysis procedure is long and involves 6 methods.
In order to integrate 6 supporting analysis methods, optimize analysis conditions, and improve the accuracy and precision of the method.
The mixed reagent of sodium peroxide and sodium hydroxide was used for alkali fusion. Citric acid was added to the solution. Cation exchange resin was used for static exchange for 2-3 hours to remove a large amount of cations in the solution and reduce matrix interference. B, Ge, Br, Mo, Sn, I, and W were determined using inductively coupled plasma mass spectrometry.
The detection limits of B, Ge, Br, Mo, Sn, I, and W were 0.66, 0.096, 0.78, 0.11, 0.15, 0.29, and 0.27μg/g, respectively. Relative standard deviation (RSD, n=12) was between 2.1% and 7.5%, which were all less than 10%.
The method is simple, rapid and low-cost, and its precision and accuracy meet the requirements of 《Specification of multi-purpose regional geochemical survey (1:250000)》 (DZ/T 0258-2014). It can quickly and accurately determine B, Ge, Br, Mo, Sn, I, W in geochemical survey samples in a thick coverage area.
[1] | 王安齐. 多目标地球化学调查样品中41种元素分析方案设计与应用[D]. 长春: 吉林大学, 2014. Wang A Q. Design and application of 41 element analysis schemes in multi-purpose geochemical survey samples[D]. Changchun: Jilin University, 2014. |
[2] | 龚仓, 帅林阳, 夏祥, 等. 交流电弧直读光谱法快速测定地质样品中银、锡、钼、硼和铅[J]. 理化检验(化学分册), 2020, 56(12): 1320-1325. Gong C, Shuai L Y, Xia X, et al. Rapid determination of silver, tin, molybdenum, boron and lead in geological samples by AC arc direct-reading spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(12): 1320-1325. |
[3] | 《岩石矿物分析》编委会. 岩石矿物分析(第四版)[M]. 北京: 地质出版社, 2011: 517-519(第三分册), 536-538 (第二分册), 201-206 (第一分册). Editorial board of 《Rock and Mineral Analysis》. Rock and mineral analysis (The fourth edition)[M]. Beijing: Geological Publishing House, 2011, 517-519 (Vol. Ⅲ), 536-538 (Vol. Ⅱ), 201-206 (Vol. Ⅰ). |
[4] | 张计东, 罗善霞, 焦圣兵, 等. 地球化学样品中微量锗的分析进展[J]. 冶金分析, 2014, 34(2): 29-35. Zhang J D, Luo S X, Jiao S B, et al. Analysis progress of trace germanium in geochemical samples[J]. Metallurgical Analysis, 2014, 34(2): 29-35. |
[5] | 侍金敏, 冯廷建, 付鹏飞, 等. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素[J]. 岩矿测试, 2019, 38(6): 631-639. Shi J M, Feng T J, Fu P F, et al. Simultaneous determination of rare elements in metal sulfide ore by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 631-639. |
[6] | 杨小斌, 张鑫, 文嘉明, 等. 混合酸溶样氢化物发生-原子荧光光谱法同时测定土壤中的硒和锗[J]. 化学分析计量, 2020, 29(5): 85-90. Yang X B, Zhang X, Wen J M, et al. Hydride generation of mixed acid-dissolved samples-simultaneous determination of selenium and germanium in soil by atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2020, 29(5): 85-90. |
[7] | 赵文志, 张填昊, 卢兵, 等. 粉末压片制样-波长色散X射线荧光光谱法测定土壤和水系沉积物中溴氯氟磷硫[J]. 冶金分析, 2021, 41(4): 27-33. Zhao W Z, Zhang T H, Lu B, et al. Determination of bromine, chlorine, fluorine, phosphorus and sulfur in soil and water system sediments by powder compaction sample preparation-wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2021, 41(4): 27-33. |
[8] | 王啸, 展向娟, 高航, 等. 逆王水微波消解-电感耦合等离子体质谱法测定地球化学样品中的碘和溴[J]. 化学分析计量, 2019, 28(1): 55-58. doi: 10.3969/j.issn.1008-6145.2019.01.013 Wang X, Zhan X J, Gao H, et al. Microwave digestion of reverse aqua regia-determination of iodine and bromine in geochemical samples by inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(1): 55-58. doi: 10.3969/j.issn.1008-6145.2019.01.013 |
[9] | 郭晓瑞, 王甜甜, 张宏丽, 等. 电感耦合等离子体质谱法测定地球化学样品中铌钽钨锡[J]. 冶金分析, 2021, 41(3): 44-50. Guo X R, Wang T T, Zhang H L, et al. Determination of niobium, tantalum, tungsten and tin in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 44-50. |
[10] | 冯先进. 电感耦合等离子体质谱分析技术在国内矿石矿物分析中的应用[J]. 冶金分析, 2020, 40(6): 21-36. Feng X J. Application of inductively coupled plasma mass spectrometry in the analysis of domestic ores andminerals[J]. Metallurgical Analysis, 2020, 40(6): 21-36. |
[11] | 徐进力, 邢夏, 刘彬, 等. 电感耦合等离子体质谱法测定铁矿石中的痕量钼元素[J]. 质谱学报, 2018, 39(2): 240-249. Xu J L, Xing X, Liu B, et al. Determination of trace molybdenum in iron ore by inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 240-249. |
[12] | 贾维斯K E, 格雷A L, 霍克R S(著). 尹明, 李冰(译). 电感耦合等离子体质谱手册[M]. 北京: 原子能出版社, 1997: 160-161. Jarvis K E, Gray A L, Houk R S(Editor). Yin M, Li B(Translators). Handbook of inductively coupled plasma-mass spectrometry[M]. Beijing: Geological Publishing House, 1997: 160-161. |
[13] | 刘崴, 胡俊栋, 杨红霞, 等. 电感耦合等离子体质谱联用技术在元素形态分析中的应用进展[J]. 岩矿测试, 2021, 40(3): 327-339. Liu W, Hu J D, Yang H X, et al. Application progress of inductively coupled plasma mass spectrometry in element speciation analysis[J]. Rock and Mineral Analysis, 2021, 40(3): 327-339. |
[14] | 金倩, 李晓敬, 陈庆芝, 等. 碱熔-强酸型阳离子交换树脂分离-电感耦合等离子体质谱法测定地质样品中硼锗钼锡碘钨[J]. 冶金分析, 2020, 40(7): 52-59. Jin Q, Li X J, Chen Q Z, et al. Determination of boron, germanium, molybdenum, tin, iodine and tungsten in geological samples by alkali fusion-strong acid cation exchange resin separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 52-59. |
[15] | 杨惠玲, 夏辉, 杜天军, 等. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J]. 岩矿测试, 2013, 32(6): 887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007 Yang H L, Xia H, Du T J, et al. Simultaneous determination of tin, tungsten, molybdenum, copper, lead and zinc in tin ore by inductively coupled plasma emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007 |
[16] | 宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007 Song W J, Dai S F, Zhao L, et al. Determination of boron in coal by microwave digestion-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007 |
[17] | 高孝礼, 黄光明, 张培新, 等. 电感耦合等离子体质谱法测定磷矿石中的碘[J]. 岩矿测试, 2009, 28(5): 423-426. doi: 10.3969/j.issn.0254-5357.2009.05.005 Gao X L, Huang G M, Zhang P X, et al. Determination of iodine in phosphate rock by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 423-426. doi: 10.3969/j.issn.0254-5357.2009.05.005 |
[18] | 李冰, 何红蓼, 史世云, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ. 不同介质及不同阴离子形态对测定信号的影响[J]. 岩矿测试, 2001, 20(3): 161-166. doi: 10.3969/j.issn.0254-5357.2001.03.001 Li B, He H L, Shi S Y, et al. Simultaneous determination of trace amounts of iodine, bromine, selenium, and arsenic in geological samples by inductively coupled plasma mass spectrometry Ⅰ. The influence of different media and different anion forms on the determination signal[J]. Rock and Mineral Analysis, 2001, 20(3): 161-166. doi: 10.3969/j.issn.0254-5357.2001.03.001 |
[19] | 黄光明, 窦银萍, 张静梅, 等. 电感耦合等离子体质谱法同时测定地下水中硼溴碘[J]. 岩矿测试, 2008, 17(1): 25-28. doi: 10.3969/j.issn.0254-5357.2008.01.007 Huang G M, Dou Y P, Zhang J M, et al. Simultaneous determination of boron, bromine and iodine in groundwater by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2008, 17(1): 25-28. doi: 10.3969/j.issn.0254-5357.2008.01.007 |
[20] | Makishima A, Nakamura E, Nakano T. Determination of boron in silicate samples by direct aspiration of sample HF solutions into ICP-MS[J]. Analytical Chemistry, 1997, 69: 3754-3759. doi: 10.1021/ac970383s |
[21] | Al-Ammar A S, Reitznerova E, Barnes R M. Feasibility of using beryllium as internal reference to reduce nonspectroscopic carbon species matrix effect in the inductively coupled plasma-mass spectrometry (ICPMS) determination of boron in biological samples[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 54: 1813-1820. doi: 10.1016/S0584-8547(99)00124-X |
[22] | 程仕群, 朱文亮, 占文慧, 等. 电感耦合等离子体质谱法测定酱油中硼含量[J]. 食品与机械, 2013, 29(5): 99-100, 248. doi: 10.3969/j.issn.1003-5788.2013.05.027 Cheng S Q, Zhu W L, Zhan W H, et al. Determination of boron in soy sauce by inductively coupled plasma mass spectrometry[J]. Food & Machinery, 2013, 29(5): 99-100, 248. doi: 10.3969/j.issn.1003-5788.2013.05.027 |
[23] | 赵立凡, 唐宏兵, 欧阳运富, 等. 电感耦合等离子体质谱法测定那曲肝素钙中痕量硼[J]. 药物分析杂志, 2012, 32(10): 1842-1844. Zhao L F, Tang H B, Ouyang Y F, et al. Determination of trace boron in natreheparin calcium by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Pharmaceutical Analysis, 2012, 32(10): 1842-1844. |
[24] | 阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159. Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. |
[25] | 靳兰兰, 王秀季, 李会来, 等. 电感耦合等离子体质谱技术进展及其在冶金分析中的应用[J]. 冶金分析, 2016, 36(7): 1-14. Jin L L, Wang X J, Li H L, et al. Progress in inductively coupled plasma mass spectrometry technology and its application in metallurgical analysis[J]. Metallurgical Analysis, 2016, 36(7): 1-14. |
[26] | 姚海云, 谭靖, 郭冬发, 等. 同位素稀释电感耦合等离子体质谱法测定高纯石英中痕量硼[J]. 质谱学报, 2004, 25(2): 77-83. doi: 10.3969/j.issn.1004-2997.2004.02.004 Yao H Y, Tan J, Guo D F, et al. Determination of trace boron in high purity quartz by isotope dilution inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(2): 77-83. doi: 10.3969/j.issn.1004-2997.2004.02.004 |
[27] | 李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005: 146. Li B, Yang H X. Principle and application of inductively coupled plasma mass spectrometry[M]. Beijing: Geological Publishing House, 2005: 146. |
[28] | 郝原芳, 刘新, 宋丽华, 等. 电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡[J]. 岩矿测试, 2016, 35(4): 378-383. Hao Y F, Liu X, Song L H, et al. Determination of trace impurity elements cadmium and tin in lead alloy by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(4): 378-383. |
[29] | 唐碧玉, 施意华, 杨仲平, 等. 灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟[J]. 岩矿测试, 2018, 37(4): 371-378. Tang B Y, Shi Y H, Yang Z P, et al. Determination of gallium, germanium and indium in coal by ashing acid dissolution-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 371-378. |
[30] | 张杰芳, 闫玉乐, 夏承莉, 等. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬[J]. 岩矿测试, 2017, 36(1): 46-51. Zhang J F, Yan Y L, Xia C L, et al. Determination of Cr(Ⅵ) in coal ash by microwave alkaline digestion and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(1): 46-51. |
[31] | 贾玉萍, 王湘玲, 肖建平. 改进的极谱法测定化探样品中的钨钼[J]. 岩矿测试, 2009, 28(5): 494-496. doi: 10.3969/j.issn.0254-5357.2009.05.020 Jia Y P, Wang X L, Xiao J P. Determination of tungsten and molybdenum in geochemical exploration samples by improved polarography[J]. Rock and Mineral Analysis, 2009, 28(5): 494-496. doi: 10.3969/j.issn.0254-5357.2009.05.020 |
[32] | 姜云军, 李星, 姜海伦, 等. 碱熔-离子交换树脂分离-电感耦合等离子体原子发射光谱法测定钨钼矿石中的钨、钼、硼、硫和磷[J]. 理化检验(化学分册), 2018, 54(9): 1030-1034. Jiang Y J, Li X, Jiang H L, et al. Determination of tungsten, molybdenum, boron, sulfur and phosphorus in tungsten molybdenum ores by alkali fusion-ion exchange resin separation-inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(9): 1030-1034. |
[33] | 何海洋, 曲少鹏, 黄钢, 等. 氢化物发生-原子荧光光谱法测定稀土矿石中的锗[J]. 稀土, 2019, 40(2): 113-119. He H Y, Qu S P, Huang G, et al. Determination of germanium in rare earth ores by hydride generation-atomic fluorescence spectrometry[J]. Rare Earths, 2019, 40(2): 113-119. |
[34] | 任冬, 周小琳, 宗有银, 等. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘[J]. 岩矿测试, 2019, 38(6): 734-740. Ren D, Zhou X L, Zong Y Y, et al. Determination of trace iodine in soil sediments and rocks by closed acid dissolution-hydroxylamine hydrochloride reduction ICP-MS method[J]. Rock and Mineral Analysis, 2019, 38(6): 734-740. |
Relationship between (a) resin dosage, (b) exchange time and counting rate