Citation: | ZHAO Zi-ke, CHEN Chun-liang, KE Sheng, ZHAO Li-rong, ZHANG Ji-biao, LI Jian. Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90-98. doi: 10.15898/j.cnki.11-2131/td.202106010069 |
The direct discharge of Hg(Ⅱ) is harmful to the environment. At present, activated carbon is used to remove it, but the production of activated carbon through high-temperature pyrolysis and activation is very expensive.
To investigate the adsorption difference and mechanism on low-concentration Hg(Ⅱ) for durian shell, coconut shell activated carbon and activated carbon fiber under different conditions.
The remaining Hg(Ⅱ) in the adsorption solution was determined by atomic fluorescence spectrometry. The adsorb kinetic parameters of different adsorbents were determined by Lagergren pseudo-second-order kinetic model.
In the Lagergren pseudo-second-order kinetic model, the maximum adsorption capacity (QM) of the three materials was as follows: activated carbon fiber (5.61μg/g)>durian shell (1.68μg/g)>coconut shell activated carbon (0.96μg/g). The adsorption test and thermodynamic equation showed that the adsorption of Hg(Ⅱ) by the three materials was spontaneous (ΔG < 0). The adsorption of Hg(Ⅱ) by coconut shell activated carbon was mainly physical adsorption (ΔH>0), while the adsorption of durian shell was an endothermic process (ΔH < 0). Due to the increase of temperature, the adsorption rate and adsorption capacity were improved.
Durian shell from a wide range of sources can be used as an effective adsorbent to treat wastewater containing Hg(Ⅱ).
[1] | 曹艳芝, 郭少青, 高丽兵. 以Hg2+离子为前驱体标定煤热解气中气相元素汞量[J]. 岩矿测试, 2017, 36(6): 581-586. Cao Y Z, Guo S Q, Gao L B. Determination of gaseous element mercury in coal pyrolysis gas using Hg2+ as precursor[J]. Rock and Mineral Analysis, 2017, 36(6): 581-586. |
[2] | 徐春霞, 孟郁苗, 黄诚, 等. 汞同位素地球化学研究及其在矿床学中的应用进展[J]. 岩矿测试, 2021, 40(2): 173-186. Xu C X, Meng Y M, Huang C, et al. Mercury isotope geochemistry and its application in ore deposit science[J]. Rock and Mineral Analysis, 2021, 40(2): 173-186. |
[3] | 南雪娇, 余晓平, 郭金玲, 等. 水生生态系统中汞-硒相互作用研究进展[J]. 岩矿测试, 2016, 35(1): 1-9. Nan X J, Yu X P, Guo J L, et al. Research progress of mercury selenium interaction in aquatic ecosystem[J]. Rock and Mineral Analysis, 2016, 35(1): 1-9. |
[4] | Li K, Wang Y, Huang M, et al. Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water[J]. Journal of Colloid & Interface Science, 2015, 455: 261-270. |
[5] | Rahul B, Padmaj P. A chitosan-thiomer polymer for highly efficacious adsorption of mercury[J]. Carbohydrate Polymers, 2019, 207: 663-674. doi: 10.1016/j.carbpol.2018.12.018 |
[6] | 李玉堂, 李柱, 刘志阳, 等. 表面功能化活性炭对水溶液中汞离子的吸附[J]. 广州化工, 2019, 47(5): 72-74, 77. Li Y T, Li Z, Liu Z Y, et al. Adsorption of mercury ions in aqueous solution by surface functionalized activated carbon[J]. Guangzhou Chemical Industry, 2019, 47(5): 72-74, 77. |
[7] | 贾里, 李泽鹏, 郭晋荣, 等. 多元金属定向修饰的改性生物焦微观特性及单质汞脱除性能研究[J]. 环境科学学报, 2021, 41(8): 3100-3111. Jia L, Li Z P, Guo J R, et al. Study on the micro-characteristics and elemental mercury removal performance of biochar doped by multi-metal directional modification[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3100-3111. |
[8] | Annadurai G, Juang R S, Lee D J. Adsorption of heavy metals from water using banana and orange peels[J]. Water Science & Technology, 2003, 47(1): 185-190. |
[9] | 熊佰炼, 崔译霖, 张进忠, 等. 改性甘蔗渣吸附废水中低浓度Cd2+和Cr3+的研究[J]. 西南大学学报(自然科学版), 2010, 2(1): 118-123. Xiong B L, Cui Y L, Zhang J Z, et al. Study on the adsorption of low concentration Cd2+ and Cr3+ in wastewater from modified sugarcane residue[J]. Journal of Southwest University (Natural Science Edition), 2010, 32(1): 118-123. |
[10] | Shaikh A A, Yaagoob I Y, Mazumder M, et al. Fast re-moval of methylene blue and Hg(Ⅱ) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid[J]. Journal of Hazardous Materials, 2019, 369: 642-654. doi: 10.1016/j.jhazmat.2019.02.082 |
[11] | Zou W, Han R, Chen Z, et al. Kinetic study of adsorption of Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions using manganese oxide coated zeolite in batch mode[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2006, 279(1-3): 238-246. |
[12] | Lin G, Hu T, Wang S, et al. Selective removal behavior and mechanism of trace Hg(Ⅱ) using modified corn husk leaves[J]. Chemosphere, 2019, 225: 65-72. doi: 10.1016/j.chemosphere.2019.03.006 |
[13] | 黄锦波, 邵灵达, 祝成炎. 活性炭纤维的制备及其应用进展[J]. 棉纺织技术, 2020(10): 11-14. doi: 10.3969/j.issn.1001-7415.2020.10.003 Huang J B, Shao L D, Zhu C Y. Preparation and application progress of activated carbon fiber[J]. Cotton Textile Technology, 2020(10): 11-14. doi: 10.3969/j.issn.1001-7415.2020.10.003 |
[14] | 王洪杰, 兰依博, 李晓东. KMnO4改性稻壳、稻杆水热炭吸附染料的研究[J]. 应用化工, 2019, 48(6): 1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022 Wang H J, Lan Y B, Li X D. Study on the adsorption of dyes by KMnO4 modified rice husk and rice straw hydrothermal carbon[J]. Applied Chemical Industry, 2019, 48(6): 1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022 |
[15] | 马培, 张继伟. 茶树菇废弃物对汞吸附特性的研究[J]. 江苏农业科学, 2017, 45(9): 253-255. Ma P, Zhang J W. Study on mercury adsorption characteristics of agrocybe aegerita waste[J]. Jiangsu Agricultural Sciences, 2017, 45(9): 253-255. |
[16] | Sadegh H, Ali G, Makhlouf A, et al. MWCNTs-Fe3O4 nanocomposite for Hg(Ⅱ) high adsorption efficiency[J]. Journal of Molecular Liquids, 2018: 345-353. |
[17] | 韩严和. 电增强活性炭纤维吸附水中部分有机物的研究[D]. 大连: 大连理工大学, 2006. Han Y H. Study on adsorption of some organic compounds in water by electro enhanced activated carbon fiber[D]. Dalian: Dalian University of Technology, 2006. |
[18] | Qiu K Z, Zhou J S, Qi P, et al. Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury[J]. Korean Journal of Chemical Engineering, 2017, 34(9): 2383-2389. doi: 10.1007/s11814-017-0154-6 |
[19] | Seyedeh S G, Mojtaba H, Behrooz M, et al. Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs[J]. Journal of Water Process Engineering, 2019, 32: 100964-100975. doi: 10.1016/j.jwpe.2019.100964 |
[20] | Zakaria A, Abdallah A, Mohammed M, et al. New amino group functionalized porous carbon for strong chelation ability towards toxic heavy metals[J]. RSC Advances, 2020, 10(52): 31087-31100. doi: 10.1039/D0RA05220E |
[21] | Esmail M, Mojtaba H, Hojat V. Kinetics and thermo-dynamics of mercury adsorption onto thiolated graphene oxide nanoparticles[J]. Polyhedron, 2019, 173: 1-9. |
[22] | 孙荣国, 范丽, 尹晓刚, 等. 香蕉皮对汞的吸附特征研究[J]. 地球与环境, 2018(5): 498-504. Sun R G, Fan L, Yin X G, et al. Study on mercury adsorption characteristics of banana peel[J]. Earth and Environment, 2018(5): 498-504. |
[23] | 李朝丽, 周立祥. 黄棕壤不同粒级组分对镉的吸附动力学与热力学研究[J]. 环境科学, 2008, 29(5): 1406-1411. doi: 10.3321/j.issn:0250-3301.2008.05.044 Li C L, Zhou L X. Kinetics and thermodynamics of cadmium adsorption by different fractions of yellow brown soil[J]. Environmental Science, 2008, 29(5): 1406-1411. doi: 10.3321/j.issn:0250-3301.2008.05.044 |
[24] | Agrawal A, Sahu K K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue[J]. Journal of Hazardous Materials, 2006, 137(2): 915-924. doi: 10.1016/j.jhazmat.2006.03.039 |
[25] | 甄豪波, 胡勇有, 程建华. 壳聚糖交联沸石小球对Cu2+, Ni2+及Cd2+的吸附特性[J]. 环境科学学报, 2011, 31(7): 1369-1376. Zhen H B, Hu Y Y, Cheng J H. Adsorption properties of chitosan crosslinked zeolite beads for Cu2+, Ni2+ and Cd2+[J]. Acta Scientiae Circumstantiae, 2011, 31(7): 1369-1376. |
(a) SEM and (b) energy spectrum of coconut shell activated carbon (voltage is 30kV)
Removal rate variation of different adsorbents with time
Removal rate variation of adsorption materials under different pH
Removal rate variation of Hg(Ⅱ) of (a)durian shell, (a)coconut shell activated carbon and (b)activated carbon fiber with weight
Removal rate variation of different adsorption materials with temperature
Adsorption isotherms of Hg(Ⅱ) on (a) coconut shell and activated carbon durian shell, (b) activated carbon fiber