Citation: | LIU Jun, WANG Ying, SU Ai-na, LIU Fu-liang, ZHANG Lin. Determination of Chlorine Stable Isotopes in Groundwater Inorganics by Continuous Flow Isotope Mass Spectrometry Method and Analysis of Influence Factors[J]. Rock and Mineral Analysis, 2022, 41(1): 80-89. doi: 10.15898/j.cnki.11-2131/td.202108090094 |
Stable chlorine isotope, as an effective tracer, can indicate the water evolution and explore the changes of the geological environment. It has a wide application prospect in earth science. The continuous flow isotope ratio mass spectrometry (CF-IRMS) method has been widely used in the determination of stable isotopes due to the advantages of smaller sample size and higher sensitivity. As a volatile gas, methyl chloride easily escapes during the reaction and the test pipeline, causing sample loss. How to achieve the separation and purification of CH3Cl and improve the conversion rate of CH3Cl of the samples in the reaction and analysis is the key to successful determination of stable chlorine isotopes by CF-IRMS.
To understand the influencing factors for the determination of CH3Cl by CF-IRMS.
The international standard material of chlorine isotope (ISL-354) was chosen as the standard material. The determination method of chlorine stable isotope content in groundwater was studied by using stable isotope ratio mass spectrometer (IRMS) analysis system combined with gas chromatography (GC) separation technology. Three types of samples from analytical pure, standard, and groundwater were chosen.
By adopting the combined sampling method of GC manual injection and dual-channel reference gas injection, the loss of methyl chloride during the reaction and testing process was reduced, the concentration of methyl chloride during the online analysis was guaranteed, and better test accuracy was obtained. The results showed that the standard deviation of the 37Cl/35Cl ratio of the samples determined by this method was within the range of 0.20‰. The error of the results from different laboratories was less than 0.035‰, which satisfied the requirement of 0.5‰ reproducibility of geological samples. Parameters such as light, temperature, sulfate removal, continuous helium flow and split ratio were the major factors affecting the test accuracy in the experiment. The influence of these parameters should be strictly controlled in the experiment to ensure the accuracy of this method.
This method has the advantages of simple pretreatment, small sample consumption, large number of test samples and short test period, which can improve the efficiency of the analytical methods of the chlorine stable isotope of groundwater inorganics.
[1] | Nier O, Hanson E E. A mass-spectrographic analysis of the ions produced in HCl under electron impact[J]. Physical Review, 1936, 50: 722-726. doi: 10.1103/PhysRev.50.722 |
[2] | Langvad T. Separation of chlorine isotope by ion- exchange chromatography[J]. Acta Chemica Scandinavica, 1954, 8(3): 526-527. |
[3] | Hill J W, Fry A. Chlorine isotope effects in the reactions of benzyl and substituted benzyl chlorides with various nucleophiles[J]. Journal of the American Chemical Society, 1962, 84. |
[4] | Taylor J W, Grimsrud E P. Chlorine isotopic ratios by negative ion mass spectrometry[J]. Analytical Chemistry, 1969, 41(6): 805-810. doi: 10.1021/ac60275a002 |
[5] | Kaufman R S, Long A, Bentley H, et al. Natural chlorine isotope variations[J]. Nature, 1984, 309: 338-340. doi: 10.1038/309338a0 |
[6] | Xiao Y K, Zhang C G. High precision isotopic measure-ment of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 116: 183-192. doi: 10.1016/0168-1176(92)80040-8 |
[7] | Shouakar-Stash O, Drimmie R J, Frape S K. Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2005, 19(2): 121-127. doi: 10.1002/rcm.1762 |
[8] | Van Acker M R M D, Shahar A, Young E D, et al. GC/multiple collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons[J]. Analytical Chemistry, 2006, 78(13): 4663-4667. doi: 10.1021/ac0602120 |
[9] | Sakaguchi-Söder K, Jager J, Grund H, et al. Monitoring and evaluation of de-chlorination processes using compound-specific chlorine isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2007, 21(18): 3077-3084. doi: 10.1002/rcm.3170 |
[10] | Eastoe C J, Long A, Land L S, et al. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: Brine genesis and evolution[J]. Chemical Geology, 2001, 176(1-4): 343-360. doi: 10.1016/S0009-2541(00)00374-0 |
[11] | Eggenkamp H G M, Louvat P, Agrinier P, et al. The bromine and chlorine isotope composition of primary halite deposits and their significance for the secular isotope composition of seawater[J]. Geochimica et Cosmochimica Acta, 2019, 264: 13-29. doi: 10.1016/j.gca.2019.08.005 |
[12] | Pinti D L, Shouakar-Stash O, Castro M C, et al. The bromine and chlorine isotopic composition of the mantleas revealed by deep geothermal fluids[J]. Geochimica et Cosmochimica Acta, 2020, 276: 14-30. doi: 10.1016/j.gca.2020.02.028 |
[13] | Yu H T, Ma T, Du Y, et al. Genesis of formation water in the northern sedimentary basin of South China Sea: Clues from hydrochemistry and stable isotopes (D, 18O, 37Cl and 81Br)[J]. Journal of Geochemical Exploration, 2019, 196: 57-65. doi: 10.1016/j.gexplo.2018.08.005 |
[14] | Eggenkamp H G M, Louvat P, Griffioen J, et al. Chlorine and bromine isotope evolution within a fully developed Upper Permian natural salt sequence[J]. Geochimica et Cosmochimica Acta, 2019, 245: 316-326. doi: 10.1016/j.gca.2018.11.010 |
[15] | Du Y, Ma T, Chen L Z, et al. Chlorine isotopic constraint on contrastive genesis of representative coastal and inland shallow brine in China[J]. Journal of Geochemical Exploration, 2016, 170: 21-29. doi: 10.1016/j.gexplo.2016.07.024 |
[16] | Eastoe C J. Stable chlorine isotopes in arid non-marine basins: Instances and possible fractionation mechanisms[J]. Applied Geochemistry, 2016, 74: 1-12. doi: 10.1016/j.apgeochem.2016.08.015 |
[17] | He Z K, Ma C M, Zhou A G, et al. Using hydrochemical and stable isotopic (δ2H, δ18O, δ11B, and δ37Cl) data to understand groundwater evolution in an unconsolidated aquifer system in the southern coastal area of Laizhou Bay, China[J]. Applied Geochemistry, 2018, 90: 129-141. doi: 10.1016/j.apgeochem.2018.01.003 |
[18] | Chen L Z, Ma T, Du Y, et al. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of southwestern Guangdong Province, China[J]. Journal of Volcanology and Geothermal Research, 2016, 318: 45-54. doi: 10.1016/j.jvolgeores.2016.03.003 |
[19] | Liu X, Wei H Z, Williams-Jones A E, et al. Chlorine isotope fractionation during serpentinization and hydrothermal mineralization: A density functional theory study[J]. Chemical Geology, 2021, 581: 120406. doi: 10.1016/j.chemgeo.2021.120406 |
[20] | Alekseeva L P, Alekseev S V. Geochemistry of ground ice, saline groundwater, and brines in the Cryoartesian Basins of the northeastern Siberian platform[J]. Russian Geology and Geophysics, 2018, 59: 144-156. doi: 10.1016/j.rgg.2018.01.012 |
[21] | Hasegawa T, Nakata K, Mahara Y, et al. Characterization of a diffusion-dominant system using chloride and chlorine isotopes (36Cl, 37Cl) for the confining layer of the Great Artesian Basin, Australia[J]. Geochimica et Cosmochimica Acta, 2016, 192: 279-294. doi: 10.1016/j.gca.2016.08.002 |
[22] | Szocs T, Frape S, Gwynne R, et al. Chlorine stable isotope and helium isotope studies contributing to the understanding of the hydro-geochemical characteristics of old groundwater[J]. Procedia Earth and Planetary Science, 2017, 17: 877-880. doi: 10.1016/j.proeps.2017.01.004 |
[23] | 查向平, 龚冰, 郑永飞. 低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化[J]. 岩矿测试, 2014, 33(4): 453-467. doi: 10.3969/j.issn.0254-5357.2014.04.002 Zha X P, Gong B, Zheng Y F. Data normalization and quality control of light element stable isotope analyses by means of continuous flow isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 453-467. doi: 10.3969/j.issn.0254-5357.2014.04.002 |
[24] | 查向平, 龚冰, 郑永飞. 高灵敏度元素分析仪-连续流同位素质谱法对硅酸盐岩中碳及碳同位素组成的精确测定[J]. 岩矿测试, 2017, 36(4): 327-339. Zha X P, Gong B, Zheng Y F. Precise measurement of carbon concentration and isotopic ratios in silicate rocks by a high sensitivity elemental analyzer coupled with a continuous flow isotope mass spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 327-339. |
[25] | 高建飞, 徐衍明, 范昌福, 等. 元素分析仪-气体同位素质谱法分析硫酸钙样品的硫同位素组成[J]. 岩矿测试, 2020, 39(1): 53-58. Gao J F, Xu Y M, Fan C F, et al. Analysis of sulfur isotope composition of gypsum samples by elemental analyzer-isotope mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 53-58. |
[26] | 周爱国, 李小倩, 刘存富, 等. 氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J]. 地球科学进展, 2008, 23(4): 342-349. doi: 10.3321/j.issn:1001-8166.2008.04.003 Zhou A G, Li X Q, Liu C F, et al. Review of analytical methods for chlorine isotopes in chlorinated volatile organic compounds and application in groundwater contamination[J]. Advances in Earth Science, 2008, 23(4): 342-349. doi: 10.3321/j.issn:1001-8166.2008.04.003 |
[27] | 张原, 祁士华. 稳定氯同位素分析技术及其在有机氯污染物研究中的应用[J]. 化学进展, 2012, 24(12): 2384-2390. Zhang Y, Qi S H. Techniques of stable chlorine isotope analysis and relevant applications in research of organochlorine pollutants[J]. Progress in Chemistry, 2012, 24(12): 2384-2390. |
[28] | 甘义群, 于凯, 周爱国, 等. 基于GasBench-IRMS的挥发性氯代烃碳氯同位素指纹特征分析[J]. 地质科技情报, 2013, 32(6): 110-115. Gan Y Q, Yu K, Zhou A G, et al. Isotopic fingerprint analysis of carbon and chlorine of volatile chlorinated hydrocarbons based on GasBench-IRMS[J]. Geological Science and Technology Information, 2013, 32(6): 110-115. |
[29] | 桂建业, 张晶, 张辰凌, 等. 反应电离质谱法测定有机单体氯同位素的研究[J]. 分析化学, 2019, 47(2): 237-243. Gui J Y, Zhang J, Zhang C L, et al. Approach to compound-specific isotope analysis of chlorine with reaction mass spectrometry and its exploration[J]. Chinese Journal of Analytical Chemistry, 2019, 47(2): 237-243. |
[30] | 刘存富, 王佩仪, 周炼. 高精度测定稳定氯同位素的制样方法[J]. 地质科技情报, 1995, 14(1): 94-98. Liu C F, Wang P Y, Zhou L. Preparative method of high-precision measurement of chlorine stable isotope[J]. Geological Science and Technology Information, 1995, 14(1): 94-98. |
[31] | Liu Y D, Zhou A G, Gan Y Q, et al. An online method to determine chlorine stable isotope composition by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled with a GasBench Ⅱ[J]. Journal of Central South University, 2013, 20(1): 193-198. doi: 10.1007/s11771-013-1476-0 |
[32] | 李小倩, 方玲, 刘运德, 等. 高氯酸盐稳定氯、氧同位素测试新技术[J]. 地质科技情报, 2015, 34(4): 200-204. Li X Q, Fang L, Liu Y D, et al. New measurement technique for stable chlorine and oxygen isotopic compositions of perchlorate[J]. Geological Science and Technology Information, 2015, 34(4): 200-204. |
[33] | Xiao Y K, Zhou Y M, Wang Q Z, et al. A secondary isotopic reference material of chlorine from selected seawater[J]. Chemical Geology, 2002, 182(2-4): 655-661. doi: 10.1016/S0009-2541(01)00349-7 |
[34] | Wei H Z, Jiang S Y, Xiao Y K, et al. Precise deter-mination of the absolute isotopic abundance ratio and the atomic weight of chlorine in three international reference materials by positive thermal ionization mass spectrometer Cs2Cl+-graphite method[J]. Analytical Chemistry, 2012, 84(23): 10350-10358. doi: 10.1021/ac302498q |
[35] | 周秋石, 王瑞. 氯同位素地球化学研究进展[J]. 地学前缘, 2020, 27(3): 42-67. Zhou Q S, Wang R. Advances in chlorine isotope geochemistry[J]. Earth Sciences Frontiers, 2020, 27(3): 42-67. |
[36] | Rosenbaum J M, Cliff R A, Coleman M L. Chlorine stable isotopes: A comparison of dual inlet and thermal ionization mass spectrometric measurement[J]. Analytical Chemistry, 2000, 72(10): 2261-2264. doi: 10.1021/ac991297q |
[37] | Godon A, Jendrzejewski N, Eggenkamp H G M, et al. A cross-calibration of chlorine isotopic measurements and suitability of seawater as the international reference material[J]. Chemical Geology, 2004, 207(1/2): 1-12. |
[38] | 张媛媛, 贺行良, 孙书文, 等. 元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探[J]. 岩矿测试, 2012, 31(4): 627-631. doi: 10.3969/j.issn.0254-5357.2012.04.012 Zhang Y Y, He X L, Sun S W, et al. A preliminary study on the determination of organic carbon stable isotope of marine sediment by element analyzer-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2012, 31(4): 627-631. doi: 10.3969/j.issn.0254-5357.2012.04.012 |
Procedure diagram of chlorine isotope testing determined by GC-CF-IRMS
Plot of the improved sample injection method